\begin{tabular}{|c|c|c|c|c|}
\hline Q1 \& \(\mathrm{F}(t)=1-\mathrm{e}^{-t / 3} \quad(\mathrm{t}>0)\) \& \& \& \\
\hline (i) \& \begin{tabular}{l}
For median \(m, \frac{1}{2}=1-\mathrm{e}^{-m / 3}\)
\[
\begin{aligned}
\& \therefore \mathrm{e}^{-m / 3}=\frac{1}{2} \Rightarrow-\frac{m}{3}=\ln \frac{1}{2}=-0.6931 \\
\& \Rightarrow m=2.079
\end{aligned}
\] \\
For \(90^{\text {th }}\) percentile \(p, 0.9=1-\mathrm{e}^{-p / 3}\)
\[
\begin{aligned}
\& \therefore \mathrm{e}^{-p / 3}=0.1 \Rightarrow-\frac{p}{3}=\ln 0.1=-2.3026 \\
\& \Rightarrow p=6.908
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& attempt to solve, here or for 90th percentile. Depends on previous M mark. \& 5 \\
\hline (ii) \& \[
\begin{aligned}
\& \mathrm{f}(t)=\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{~F}(\mathrm{t}) \\
\& =\frac{1}{3} \mathrm{e}^{-t / 3} \\
\& \mu=\int_{0}^{\infty} \frac{1}{3} t \mathrm{e}^{-t / 3} \mathrm{~d} t \\
\& =\frac{1}{3}\left\{\left[\frac{t \mathrm{e}^{-t / 3}}{-1 / 3}\right]_{0}^{\infty}+3 \int_{0}^{\infty} \mathrm{e}^{-t / 3} \mathrm{~d} t\right\} \\
\& =[0-0]+\left[\frac{\mathrm{e}^{-t / 3}}{-1 / 3}\right]_{0}^{\infty}=3
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
(for \(t>0\), but condone absence of this) \\
Quoting standard result gets \(0 / 3\) for the mean. \\
attempt to integrate by parts
\end{tabular} \& 5 \\
\hline \[
\begin{aligned}
\& \hline \text { (iii } \\
\& \hline \text { (}
\end{aligned}
\] \& \[
\begin{aligned}
\mathrm{P}(T>\mu)= \& {[\text { from cdf }] \mathrm{e}^{-\mu / 3}=\mathrm{e}^{-1} } \\
\& =0.3679
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
[or via pdf] \\
ft c's mean (>0)
\end{tabular} \& 2 \\
\hline (iv) \& \(\bar{T} \sim(\) approx \() ~ N\left(3, \frac{9}{30}=0.3\right)\) \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{N} \\
\& \mathrm{ft} \mathrm{c's} \mathrm{mean} \mathrm{(>0)} \\
\& 0.3
\end{aligned}
\] \& 3 \\
\hline (v) \& \begin{tabular}{l}
EITHER can argue that 4.2 is more than 2 \\
SDs from \(\mu\)
\[
(3+2 \sqrt{0.3}=4.095 ;
\] \\
must refer to \(\mathrm{SD}(\overline{\mathrm{T}})\), not \(\mathrm{SD}(\mathrm{T})\)) \\
i.e. outlier \\
\(\Rightarrow\) doubt \\
OR formal \\
significance test: \\
\(\frac{4.2-3}{3 / \sqrt{30}}=2.191\), refer to \(\mathrm{N}(0,1)\), sig at (eg) \(5 \%\)
\[
\Rightarrow \text { doubt }
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& Depends on first M, but could imply it. \& 3

18 \\
\hline
\end{tabular}

Q2	$X \sim \mathrm{~N}(180, \sigma=12)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} & \mathrm{P}(X<170)=\mathrm{P}\left(Z<\frac{170-180}{12}=-0.8333\right) \\ & =1-0.7976=0.2024 \end{aligned}$	M A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & X_{1}+X_{2}+X_{3}+X_{4}+X_{5} \sim \mathrm{~N}\left(900, \sigma^{2}=720[\sigma=26.8328]\right. \\ & \mathrm{P}(\text { this }<840)=\mathrm{P}\left(Z<\frac{840-900}{26.8328}=-2.236\right) \\ & =1-0.9873=0.0127 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
$\begin{aligned} & \text { (iii } \\ & \hline \text { (} \end{aligned}$	$\begin{aligned} & Y \sim \mathrm{~N}(50, \sigma=6) \\ & X+Y \sim \mathrm{~N}\left(230, \sigma^{2}=180[\sigma=13.4164]\right) \\ & \mathrm{P}(\text { this }>240)=\mathrm{P}\left(Z>\frac{240-230}{13.4164}=0.7454\right) \\ & =1-0.7720=0.2280 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iv)	$\frac{1}{4} X \sim N\left(45, \sigma^{2}=\frac{1}{16} \times 144=9[\sigma=3]\right)$ Require t such that $0.9=\mathrm{P}(\text { this }<t)=\mathrm{P}\left(Z<\frac{t-45}{3}\right)=\mathrm{P}(Z<1.282)$ $\therefore t-45=3 \times 1.282 \Rightarrow t=48.85(48.846)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{M} \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Variance. Accept sd. FT incorrect mean. Formulation of requirement. 1.282 ft only for incorrect mean	4
(v)	$\begin{aligned} & I=45+T \text { where } T \sim \mathrm{~N}(120, \sigma=10) \\ & \therefore I \sim \mathrm{~N}(165, \sigma=10) \\ & \mathrm{P}(I<150)=\mathrm{P}\left(Z<\frac{150-165}{10}=-1.5\right) \\ & =1-0.9332=0.0668 \end{aligned}$	B1 A1	for unchanged σ (candidates might work with $\mathrm{P}(T<105))$ c.a.o.	2
(vi)	$J=30+\frac{3}{5} T \text { where } T \sim \mathrm{~N}(120, \sigma=10)$		Cands might work with $\mathrm{P}\left(\frac{3}{5} T<75\right) .$ $\frac{3}{5} T \sim N(72,36)$	

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
For machine A, \(\quad \bar{x}=250.19 \quad s_{n-1}=3.8527\) \\
CI is given by \(\quad 250.19 \pm 2.262 \frac{3.8527}{\sqrt{10}}\)
\[
\begin{aligned}
\& \quad=250.19 \pm 2.75(6)=(247.43(4), \\
\& 252.94(6))
\end{aligned}
\] \\
250 is in the CI, so would accept \(\mathrm{H}_{0}: \mu=\) 250 , so no evidence that machine is not working correctly in this respect.
\end{tabular} \& B1
M

B1
M
A1

E1 \& | $s_{n}=3.6549(83)$ but do NOT |
| :--- |
| allow this here or in construction of CI. |
| ft c's $\bar{x} \pm$. |
| 2.262 |
| ft c's $S_{n 1}$. |
| c.a.o. Must be expressed as an interval. |
| ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{9} is OK. | \\

\hline \& \& \\
\hline
\end{tabular}

(B)	Data 301.3 301.4 299.6 302.2 300.3 303.2 302.6 301.8 300.9 300.8$T=1+2$ 39) Refer to (/paired) Lower (or needed Value for Result is No evid	Median 301 \qquad \qquad \square \qquad \square \qquad $5+8=1$ les of W atistic upper if 3 $=10$ is t signific e against	Difference 0.3 0.4 -1.4 1.2 -0.7 2.2 1.6 0.8 -0.1 -0.2 (or 3+4+6+ coxon single used) 5\% ta (or 45 if 39 nt median being	Rank of \mid diff 3 4 8 7 5 10 9 6 1 2 $+9+10=$ sample lis used) 301	M M A1 B1 M M A1 E1 E1	for differences. ZERO in this section if differences not used. for ranks. FT if ranks wrong.	9
							18

Q1	$\mathrm{f}(x)=12 x^{3}-24 x^{2}+12 x, \quad 0 \leq x \leq 1$			
(i)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} x \mathrm{f}(x) \mathrm{d} x \\ & =12\left[\frac{x^{5}}{5}-2 \frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1} \\ & =12\left[\frac{1}{5}-\frac{2}{4}+\frac{1}{3}\right]=12 \times \frac{1}{30}=\frac{2}{5} \end{aligned}$ For mode, $\mathrm{f}^{\prime}(x)=0$ $\begin{aligned} & \mathrm{f}^{\prime}(x)=12\left(3 x^{2}-4 x+1\right)=12(3 x-1)(x-1) \\ & \therefore \mathrm{f}^{\prime}(x)=0 \text { for } x=1 \text { and } x=\frac{1}{3} \end{aligned}$ Any convincing argument (e.g. $\mathrm{f}^{\prime \prime}(x)$) that $\frac{1}{3}$ (and not 1) is the mode.	M1 A1 A1 M1 A1 A1	Integral for $\mathrm{E}(X)$ including limits (which may appear later). Successfully integrated. Correct use of limits leading to final answer. C.a.o.	6
(ii)	$\begin{aligned} \text { Cdf } \mathrm{F}(x) & =\int_{0}^{x} \mathrm{f}(t) \mathrm{d} t \\ & =12\left(\frac{x^{4}}{4}-2 \frac{x^{3}}{3}+\frac{x^{2}}{2}\right) \\ & =3 x^{4}-8 x^{3}+6 x^{2} \end{aligned}$ $\begin{aligned} & F\left(\frac{1}{4}\right)=\frac{3}{256}-\frac{8}{64}+\frac{6}{16}=\frac{3-32+96}{256}=\frac{67}{256} \\ & F\left(\frac{1}{2}\right)=\frac{3}{16}-\frac{8}{8}+\frac{6}{4}=\frac{3-16+24}{16}=\frac{11}{16} \end{aligned}$ $F\left(\frac{3}{4}\right)=\frac{3 \times 81}{256}-\frac{8 \times 27}{64}+\frac{6 \times 9}{16}=\frac{243}{256}$	M1	Definition of cdf, including limits (or use of " +C " and attempt to evaluate it), possibly implied later. Some valid method must be seen. Or equivalent expression; condone absence of domain [0,1]. For all three; answers given; must show convincing working (such as common denominator)! Use of decimals is not acceptable.	3
(iii)	$\begin{aligned} & x^{2}=0.4776+0.3716+0.0672+15 \cdot 3846= \\ & \quad 16 \cdot 30(1) \\ & \text { Refer to } \chi_{3}^{2} . \end{aligned}$ Very highly significant. Very strong evidence that the model does not fit. The main feature is that we observe many	B2 M1 A1 M1 A1 A1	For e_{i}. B1 if any 2 correct, provided $\Sigma=$ 512. Must be some clear evidence of reference to χ_{3}^{2}, probably implicit by reference to a critical point ($5 \%: 7 \cdot 815 ; 1 \%: 11 \cdot 34$). No ft (to the A marks) if incorrect χ^{2} used, but E marks are still available. There must be at least one reference to "very ...", i.e. the extremeness of the test statistic. Or e.g. "big/small" contributions	

more loads at the "top end" than expected. The other observations are below expectation, but discrepancies are comparatively small.	E1	to X^{2} gets E1, ...		
\ldots and directions of				
discrepancies gets E1.			$\quad 9$	(
:---				

Q2	A to $\mathrm{B}: X \sim \mathrm{~N}(26, \sigma=3)$ B to $C: Y \sim N(15, \sigma=2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(X<24) & =\mathrm{P}\left(Z<\frac{24-26}{3}=-0 \cdot 6667\right) \\ & =1-0.7476=0.2524 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. с.a.o.	3
(ii)	$\begin{aligned} & X+Y \sim \mathrm{~N}(41, \\ & \mathrm{P}(\text { this }<42)= \\ & \quad \mathrm{P}\left(Z<\frac{42-41}{3 \cdot 6056}=0 \cdot 2774\right)=0 \cdot 6093 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iii)	$\begin{aligned} & 0 \cdot 85 X \sim \mathrm{~N}(22 \cdot 1 \\ & \sigma^{2}\left.=(0 \cdot 85)^{2} \times 9=6 \cdot 5025[\sigma=2 \cdot 55]\right) \\ & \mathrm{P}(\text { this }<24)=\mathrm{P}\left(Z<\frac{24-22 \cdot 1}{2 \cdot 55}=0 \cdot 7451\right) \\ &=0.7719 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd. c.a.o.	3
(iv)	$\begin{aligned} 0 \cdot 9 X+0 \cdot 8 Y & \sim N(23 \cdot 4+12=35 \cdot 4, \\ \sigma^{2} & =(0 \cdot 9)^{2} \times 9+(0 \cdot 8)^{2} \times 4=9 \cdot 85[\sigma=3 \cdot 1383) \end{aligned}$ Require t such that $0.75=\mathrm{P}($ this $<t)$ $\begin{array}{r} =\mathrm{P}\left(Z<\frac{t-35 \cdot 4}{3 \cdot 1385}\right)=\mathrm{P}(Z<0 \cdot 6745) \\ \therefore t-35 \cdot 4=3 \cdot 1385 \times 0 \cdot 6745=2 \cdot 1169 \\ \Rightarrow t=37 \cdot 52 \end{array}$ Must therefore take scheduled time as 38	B1 B1 M1 B1 A1 M1	Mean. Variance. Accept sd. Formulation of requirement (using c's parameters). Any use of a continuity correction scores MO (and hence A0). 0.6745 c.a.o. Round to next integer above c's value for t.	6
(v)	Cl is given by $13 \cdot 4 \pm 1 \cdot 96 \frac{2}{\sqrt{15}}$ $\begin{aligned} & =13 \cdot 4 \pm 1 \cdot 0121=(12 \cdot 38(79), \\ & 14 \cdot 41(21)) \end{aligned}$	M1 B1 A1	If both 13.4 and $2 / \sqrt{15}$ are correct. (N.B. 13.4 is given as \bar{x} in the question.) (If $3 / \sqrt{15}$ used, treat as mis-read and award this M1, but not the final A1.) For 1.96 c.a.o. Must be expressed as an interval.	3
				18

Q3				
(i)	Simple random sample might not be representative - e.g. it might contain only managers.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Or other sensible comment.	2
(ii)	Presumably there is a list of staff, so systematic sampling would be possible. List is likely to be alphabetical, in which case systematic sampling might not be representative. But if the list is in categories, systematic sampling could work well.	E1 E1 E1	Or other sensible comments.	3
(iii)	Would cover the entire population. Can get information for each category.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		2
(iv)	5, 11, 24	B1	(4.8, 11-2, 24)	1
(v)	$\bar{x}=345818, \quad s_{n-1}=69241$ Underlying Normality $\mathrm{H}_{0}: \mu=300000, \quad \mathrm{H}_{1}: \mu>300000$ Test statistic is $\frac{345818-300000}{\frac{69241}{\sqrt{11}}}$ $=2 \cdot 19(47)$ Refer to t_{10}. Upper 5\% point is 1.812. Significant. Evidence that mean wealth is greater than 300000. Cl is given by $\begin{aligned} & 345818 \pm \\ & 2 \cdot 228 \\ & \\ & \times \frac{69241}{\sqrt{ } 11} \end{aligned}$ $=345818 \pm 46513 \cdot 84=(299304(\cdot 2)$	M1 A1 M1 A1 A1 A1 M1 B1 M1 A1	All given in the question. Allow alternatives: 300000 + (c's $1.812) \times \frac{69241}{\sqrt{11}}(=337829)$ for subsequent comparison with 345818. or 345818 - (c's 1.812) $\times \frac{69241}{\sqrt{ } 11}$ (= 307988) for comparison with 300000. c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{d}$ scores M1A0, but ft . No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1-796) can score 1 of these last 2 marks if either form of conclusion is given. c.a.o. Must be expressed as an	10

$392331(\cdot 8))$	interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.		

Q4					
(i)	Difference s Rank of \|diff	 -2 2 -1 1 -6 5 -3 3 4 4 -12 9 7 6 -8 7 -10 8$T=4+6=10 \quad \text { (or } 1+2+3+5+7+8+9=35)$ Refer to tables of Wilcoxon paired (/single sample) statistic. Lower (or upper if 35 used) 5% tail is needed. Value for $n=9$ is 8 (or 37 if 35 used). Result is not significant. No evidence to suggest a real change.	M1 M1 A1 B1 M1 M1 A1 A1 A1	For differences. ZERO in this section if differences not used. For ranks. FT from here if ranks wrong No ft from here if wrong. i.e. a 1-tail test. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	9
(ii)	Normality of differences is required. CI MUST be based on DIFFERENCES. Differences are $53,15,32,13,61$, 82, 70 $\bar{d}=46.5714 \quad s_{n-1}=27.0485$ Cl is given by $\begin{aligned} & 46.5714 \pm \\ & 3.707 \end{aligned}$ $\times \frac{27 \cdot 0485}{\sqrt{ } 7}$ $=46 \cdot 5714 \pm 37 \cdot 8980=(8 \cdot 67(34), 84 \cdot 47)$ Cannot base Cl on Normal distribution because sample is small population s.d. is not known	B1 B1 M1 B1 B1 M1 A1 E1 E1	ZERO/6 for the Cl if differences not used. Accept negatives throughout. Accept $s_{n-1}^{2}=731 \cdot 62 \ldots$ [$s_{n}=25.0420$, but do NOT allow this here or in construction of Cl .] Allow c's $\bar{d} \pm \ldots$ If t_{6} used. 99\% 2-tail point for c's t distribution. (Independent of previous mark.) Allow c's S_{n-1}. c.a.o. Must be expressed as an interval. [Upper boundary is 84.4694] Insist on "population", but allow " σ ".	9	
				18	

Q1	$\mathrm{f}(x)=k(1-x) \quad 0 \leq x \leq 1$			
(i)	$\int_{0}^{1} k(1-x) \mathrm{d} x=1$ $\begin{aligned} & \therefore k\left[x-\frac{1}{2} x^{2}\right]_{0}^{1}=1 \\ & \therefore k\left(1-\frac{1}{2}\right)-0=1 \\ & \therefore k=2 \end{aligned}$ Labelled sketch: straight line segment from $(0,2)$ to $(1,0)$.	M1 E1 G1 G1	Integral of $f(x)$, including limits (possibly implied later), equated to 1 . Convincingly shown. Beware printed answer. Correct shape. Intercepts labelled.	4
(ii)	$\left.\begin{array}{l} \mathrm{E}(X)= \\ =\int_{0}^{1} 2 x(1-x) \mathrm{d} x \\ \\ =\left[x^{2}-\frac{2}{3} x^{3}\right]_{0}^{1}=\left(X^{2}\right) \end{array}=\int_{0}^{1} 2 x^{2}(1-x) \mathrm{d} x\right)-0=\frac{1}{3}, ~ \begin{aligned} \operatorname{Var}(X) & =\frac{1}{6}-\left(\frac{1}{3}\right)^{2} \\ & \left.=\frac{1}{18} x^{3}-\frac{2}{4} x^{4}\right]_{0}^{1}=\left(\frac{2}{3}-\frac{1}{2}\right)-0=\frac{1}{6} \end{aligned}$	M1 A1 M1 M1 A1	Integral for $\mathrm{E}(X)$ including limits (which may appear later). Integral for $E\left(X^{2}\right)$ including limits (which may appear later). Convincingly shown. Beware printed answer.	5
(iii)	$\begin{aligned} & \begin{aligned} \mathrm{F}(x) & =\int_{0}^{x} 2(1-t) \mathrm{d} t \\ & =\left[2 t-t^{2}\right]_{0}^{x}=\left(2 x-x^{2}\right)-0=2 x-x^{2} \end{aligned} \\ & \begin{aligned} \mathrm{P}(X>\mu) & =\mathrm{P}\left(X>\frac{1}{3}\right)=1-\mathrm{F}\left(\frac{1}{3}\right) \\ & =1-\left(2 \times \frac{1}{3}-\left(\frac{1}{3}\right)^{2}\right)=1-\frac{5}{9}=\frac{4}{9} \end{aligned} \end{aligned}$	M1 A1 M1 A1	Definition of cdf, including limits, possibly implied later. Some valid method must be seen. [for $0 \leq x \leq 1$; do not insist on this.] For 1 - c's $\mathrm{F}(\mu)$. ft c's $E(X)$ and $F(x)$. If answer only seen in decimal expect 3 d.p. or better.	4
(iv)	$\begin{aligned} F\left(1-\frac{1}{\sqrt{2}}\right) & =2\left(1-\frac{1}{\sqrt{2}}\right)-\left(1-\frac{1}{\sqrt{2}}\right)^{2} \\ & =2-\frac{2}{\sqrt{2}}-1+\frac{2}{\sqrt{2}}-\frac{1}{2}=\frac{1}{2} \end{aligned}$ Alternatively: $\begin{aligned} & 2 m-m^{2}=\frac{1}{2} \\ & \therefore m^{2}-2 m+\frac{1}{2}=0 \\ & \therefore m=1 \pm \frac{1}{\sqrt{2}} \end{aligned}$ SO $m=1-\frac{1}{\sqrt{2}}$	M1 E1 M1 E1	Substitute $m=1-\frac{1}{\sqrt{2}}$ in C's cdf. Convincingly shown. Beware printed answer. Form a quadratic equation $\mathrm{F}(m)=\frac{1}{2}$ and attempt to solve it. ft c's cdf provided it leads to a quadratic. Convincingly shown. Beware printed answer.	2
(v)	$\bar{X} \sim \mathrm{~N}\left(\frac{1}{3}, \frac{1}{1800}\right)$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Normal distribution. Mean. ft c's $\mathrm{E}(X)$. Correct variance.	3
				18

Q2				
(i)	$\begin{aligned} & \mathrm{H}_{0}: \mu=0.6 \\ & \mathrm{H}_{1}: \mu<0.6 \end{aligned}$ Where μ is the (population) mean height of the saplings. $\bar{x}=0.5883, s_{n-1}=0.03664 \quad\left(s_{n-1}^{2}=0.00134\right)$ Test statistic is $\frac{0 \cdot 5883-0 \cdot 6}{\left(\frac{0 \cdot 03664}{\sqrt{12}}\right)}$ $=-1 \cdot 103$ Refer to t_{11}. Lower 5\% point is -1.796 . $-1.103>-1.796, \therefore$ Result is not significant. Seems mean height of saplings meets the manager's requirements. Underlying population is Normal.	B1 B1 B1 B1 M1 A1 M1 A1 E1 E1 B1	Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=$..." or similar unless \bar{X} is clearly and explicitly stated to be a population mean. Hypotheses in words only must include "population". Do not allow $s_{n}=0.03507\left(s_{n}{ }^{2}=\right.$ 0.00123). Allow c's \bar{x} and/or s_{n-1}. Allow alternative: $0.6 \pm$ (c's $1.796) \times \frac{0.03664}{\sqrt{12}}(=0.5810$, 0.6190) for subsequent comparison with \bar{x}. (Or $\bar{x} \pm\left(c^{\prime} s-1.796\right) \times \frac{0.03664}{\sqrt{12}}$ ($=0.5693,0.6073$) for comparison with 0.6.) c.a.o. but ft from here in any case if wrong. Use of $0.6-\bar{x}$ scores M1A0, but ft . No ft from here if wrong. No ft from here if wrong. Must be -1.796 unless it is clear that absolute values are being used. ft only c's test statistic. ft only c's test statistic.	11
(ii)	$\begin{aligned} & \text { CI is given by } 0.5883 \pm \\ & \quad 2.201 \\ & \quad \times \frac{0.03664}{\sqrt{12}} \\ & \quad=0.5883 \pm 0.0233=(0.565(0), 0.611(6)) \end{aligned}$	M1 B1 M1 A1	ft C's $\bar{x} \pm$. ft c's s_{n-1}. c.a.o. Must be expressed as an interval. ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{11} is OK.	

	In repeated sampling, 95\% of intervals constructed in this way will contain the true population mean.	E1		5
(iii)	Could use the Wilcoxon test. Null hypothesis is "Median =0.6".	E1 E1		2
				18

Q3	$\begin{aligned} & M \sim N\left(44,4.8^{2}\right) \\ & H \sim N\left(32,2.6^{2}\right) \\ & P \sim N\left(21,3.7^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$\begin{array}{r} \mathrm{P}(M<50)=\mathrm{P}\left(Z<\frac{50-44}{4 \cdot 8}=1.25\right) \\ =0.8944 \end{array}$	M1 A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & H+P \sim N(32+21=53, \\ & \left.2 \cdot 6^{2}+3.7^{2}=20.45\right) \\ & P(H+P<50)=P\left(Z<\frac{50-53}{\sqrt{20 \cdot 45}}=-0.6634\right) \\ & =1-0.7465=0.2535 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd $=\sqrt{ } 20.45=$ 4.522... c.a.o.	3
(iii)	Want $\mathrm{P}(M>H+P)$ i.e. $\mathrm{P}(M-(H+P)>0)$ $\begin{aligned} M-(H+P) \sim \mathrm{N}(44-(32+21)=-9 \\ 4 \cdot 8^{2}+2 \cdot 6^{2}+3 \cdot 7^{2}= \end{aligned}$ 43.49) $\begin{aligned} P(\text { this }>0) & =P\left(Z>\frac{0-(-9)}{\sqrt{43 \cdot 49}}=1.365\right) \\ & =1-0.9139=0.0861 \end{aligned}$	M1 B1 B1 A1	Allow $H+P-M$ provided subsequent work is consistent. Mean. Variance. Accept sd $=\sqrt{ } 43.49=$ 6.594...	4
(iv)	$\begin{aligned} & \text { Mean }=44+44+32+32+21+21 \\ & \quad=194 \\ & \text { Variance }=4 \cdot 8^{2}+4 \cdot 8^{2}+2 \cdot 6^{2}+2 \cdot 6^{2}+3 \cdot 7^{2}+ \\ & 3 \cdot 7^{2} \\ & \quad=86 \cdot 98 \end{aligned}$	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	(sd = 9.3263...)	2
(v)	$\begin{aligned} & C \sim \mathrm{~N}(194 \times 0 \cdot 15+10=39 \cdot 10 \\ & \left.86 \cdot 98 \times 0 \cdot 15^{2}=1 \cdot 957\right) \\ & \begin{array}{r} \mathrm{P}(C \leq 40)=P\left(Z \leq \frac{40-39 \cdot 10}{\sqrt{1 \cdot 957}}=0.6433\right) \\ =0.7400 \end{array} \end{aligned}$ Alternatively: $\mathrm{P}(C \leq 40)=\mathrm{P}\left(\text { total time } \leq \frac{40-10}{0.15}=200\right.$ minutes) $=\mathrm{P}\left(Z \leq \frac{200-194}{\sqrt{86 \cdot 98}}=0.6433\right)$	M1 M1 A1 M1 A1 A1 M1 M1 A1 M1 A1	```c's mean in (iv) }\times0.1 +10 (or subtract 10 from 40 below) ft c's mean in (iv). c's variance in (iv) }\times0.1\mp@subsup{5}{}{2``` ft c's variance in (iv). c.a.o. -10 $\div 0.15$ c.a.o. Correct use of c's variance in (iv). ft c's mean and variance in (iv).	6

	$=0.7400$	A1	c.a.o.	
				18

Q4						
(a)	Obs Exp 10 6.68$\begin{aligned} & \therefore X^{2}=\frac{(10-6 \cdot 68)^{2}}{6 \cdot 68}+\text { etc } \\ & =1 \cdot 6501+1.7740+3.3203+4.5018+ \\ & 0.4015+0.8135 \\ & =12 \cdot 46(12) \end{aligned}$$\text { d.o.f. }=6-3=3$ Refer to χ_{3}^{2}. Upper 5\% point is 7.815 $12.46>7.815 \quad \therefore$ Result is significant. Seems the Normal model does not fit the data at the 5% level. E.g. - The biggest discrepancy is in the class $1.01<a \leq 1.02$ - The model overestimates in classes ..., but underestimates in classes ...	M1 M1 A1 M1 A1 E1 E1 E1 E1	Combine first two rows. Require d.o.f. $=$ No. cells used 3. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Any two suitable comments.	9		
(b)	Old - New: 0.007 0.002 -0.001 -0.003 0.004 Rank of \|diff	6 2 1 3 4$W_{+}=6+2+4+8=20$ Refer to Wilcoxon single sample (/paired) tables for $n=10$. Lower two-tail 10\% point is ... $\text { ... } 10 .$ $20>10 \therefore$ Result is not significant. Seems there is no reason to suppose the barometers differ.	$\begin{aligned} & \left.\begin{array}{r} -0.008 \\ 7 \\ \text { M1 } \\ \text { A1 } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \text { E1 } \\ \text { E1 } \end{array} \right\rvert\, \end{aligned}$	$\begin{array}{rrrr} -0.010 & 0.009 & -0.005 & -0.016 \\ 9 & 8 & 5 & 10 \end{array}$ For differences. ZERO in this section if differences not used. For ranks of \|difference	. All correct. ft from here if ranks wrong. $\begin{aligned} & \text { Or } W_{-}=1+3+7+9+5+10 \\ & =35 \end{aligned}$ No ft from here if wrong. Or, if 35 used, upper point is 45 . No ft from here if wrong. Or $35<45$. ft only c's test statistic. ft only c's test statistic.	9
				18		

\begin{tabular}{|c|c|c|c|c|}
\hline Q1 \& \(\mathrm{f}(t)=k t^{3}(2-t) \quad 0<t \leq 2\) \& \& \& \\
\hline (i) \& \[
\begin{aligned}
\& \int_{0}^{2} k t^{3}(2-t) \mathrm{d} t=1 \\
\& \therefore\left[k\left(\frac{2 t^{4}}{4}-\frac{t^{5}}{5}\right)\right]_{0}^{2}=1 \\
\& \therefore k\left(8-\frac{32}{5}\right)-0=1 \\
\& \therefore k \times \frac{8}{5}=1 \quad \therefore k=\frac{5}{8}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
E1
\end{tabular} \& \begin{tabular}{l}
Integral of \(\mathrm{f}(t)\), including limits (possibly implied later), equated to 1. \\
Convincingly shown. Beware printed answer.
\end{tabular} \& 2 \\
\hline (ii) \& \[
\begin{aligned}
\& \frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{5}{8}\left(6 t^{2}-4 t^{3}\right)=0 \\
\& \therefore 6 t^{2}-4 t^{3}=0 \\
\& \therefore 2 t^{2}(3-2 t)=0 \\
\& \therefore t=(0 \text { or }) \frac{3}{2}
\end{aligned}
\] \& M1

A1 \& | Differentiate and set equal to zero. |
| :--- |
| c.a.o. | \& 2 \\

\hline (iii) \& \[
$$
\begin{aligned}
\mathrm{E}(T) & =\int_{0}^{2} \frac{5}{8} t^{4}(2-t) \mathrm{d} t \\
& =\left[\frac{5}{8}\left(\frac{2 t^{5}}{5}-\frac{t^{6}}{6}\right)\right]_{0}^{2}=\frac{5}{8} \times\left(\frac{64}{5}-\frac{64}{6}\right)=\frac{4}{3} \\
\mathrm{E}\left(T^{2}\right) & =\int_{0}^{2} \frac{5}{8} t^{5}(2-t) \mathrm{d} t \\
& =\left[\frac{5}{8}\left(\frac{2 t^{6}}{6}-\frac{t^{7}}{7}\right)\right]_{0}^{2}=\frac{5}{8} \times\left(\frac{128}{6}-\frac{128}{7}\right)=\frac{40}{21} \\
\operatorname{Var}(T) & =\frac{40}{21}-\left(\frac{4}{3}\right)^{2}=\frac{120-112}{63}=\frac{8}{63}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| M1 |
| A1 | \& | Integral for $\mathrm{E}(T)$ including limits (which may appear later). |
| :--- |
| Integral for $\mathrm{E}\left(T^{2}\right)$ including limits (which may appear later). |
| Convincingly shown. Beware printed answer. | \& 5 \\

\hline (iv) \& $\bar{T} \sim \mathrm{~N}\left(\frac{4}{3}, \frac{8}{63 n}\right)$ \& $$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 }
\end{aligned}
$$ \& Normal distribution. Mean. ft c's $\mathrm{E}(T)$. Correct variance. \& 3 \\

\hline
\end{tabular}

(v)	$\begin{aligned} & n=100, \quad \bar{t}=\frac{145 \cdot 2}{100}=1 \cdot 452 \\ & s_{n-1}^{2}=\frac{223 \cdot 41-100 \times 1 \cdot 452^{2}}{99}=0 \cdot 12707 \end{aligned}$ CI is given by $1.452 \pm$ $=1.452 \pm 0.0698=(1.382,1.522)$ Since $\mathrm{E}(T)(=4 / 3)$ lies outside this interval it seems the model may not be appropriate.	B1 M1 B1 M1 A1 E1	Both mean and variance. Accept sd $=0 \cdot 3565$ ft c 's $\bar{t} \pm$. ft c's $S_{n 1}$. c.a.o. Must be expressed as an interval.	6
				18

Q2	$\begin{aligned} & C a \sim \mathrm{~N}\left(60 \cdot 2,5 \cdot 2^{2}\right) \\ & C o \sim \mathrm{~N}\left(33 \cdot 9,6 \cdot 3^{2}\right) \\ & L \sim \mathrm{~N}\left(52 \cdot 4,4 \cdot 9^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(C o<40)=\mathrm{P}\left(Z<\frac{40-33 \cdot 9}{6 \cdot 3}\right. & =0.9683) \\ & =0.8336 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	Want $\mathrm{P}(L>C a)$ i.e. $\mathrm{P}(L-C a>0)$ $\begin{aligned} & L-C a \sim \mathrm{~N}(52 \cdot 4-60 \cdot 2=-7 \cdot 8 \\ & \left.4 \cdot 9^{2}+5 \cdot 2^{2}=51 \cdot 05\right) \\ & \mathrm{P}(\text { this }>0)=\mathrm{P}\left(Z>\frac{0-(-7 \cdot 8)}{\sqrt{51 \cdot 05}}=1 \cdot 0917\right) \\ & =1-0.8625=0 \cdot 1375 \end{aligned}$	M1 B1 B1 A1	Allow $C a-L$ provided subsequent work is consistent. Mean. Variance. Accept sd $=\sqrt{ } 51 \cdot 05=$ 7•1449... c.a.o.	4
(iii)	$\begin{aligned} & \text { Want } \mathrm{P}\left(C a_{1}+C a_{2}+C a_{3}+C a_{4}>225\right) \\ & C a_{1}+\ldots \sim \mathrm{N}(60 \cdot 2+60 \cdot 2+60 \cdot 2+60 \cdot 2=240 \cdot 8, \\ & \left.5 \cdot 2^{2}+5 \cdot 2^{2}+5 \cdot 2^{2}+5 \cdot 2^{2}=108 \cdot 16\right) \end{aligned} \quad \begin{array}{r} \mathrm{P}(\text { this }>225)=\mathrm{P}\left(Z>\frac{225-240 \cdot 8}{\sqrt{108 \cdot 16}}=-1 \cdot 519\right) \\ =0 \cdot 9356 \end{array}$ Must assume that the weeks are independent of each other.	M1 B1 B1 A1 B1	Mean. Variance. Accept $\mathrm{sd}=\sqrt{ } 108 \cdot 16=10 \cdot 4$. c.a.o.	5
(iv)	$\begin{aligned} & R \sim \mathrm{~N}(0 \cdot 05 \times 60 \cdot 2+0 \cdot 1 \times 33 \cdot 9+0 \cdot 2 \times 52 \cdot 4=16 \cdot 88, \\ & \left.0 \cdot 05^{2} \times 5 \cdot 2^{2}+0 \cdot 1^{2} \times 6 \cdot 3^{2}+0 \cdot 2^{2} \times 4 \cdot 9^{2}=1 \cdot 4249\right) \\ & \mathrm{P}(R>20)=\mathrm{P}\left(Z>\frac{20-16 \cdot 88}{\sqrt{1 \cdot 4249}}=2 \cdot 613\right) \\ & \quad=1-0 \cdot 9955=0.0045 \end{aligned}$	M1 A1 M1 M1 A1 A1	Mean. For 0.05^{2} etc. For $\times 5 \cdot 2^{2}$ etc. Accept sd $=\sqrt{ } 1 \cdot 4249=1 \cdot 1937$. c.a.o.	6
				18

Q3				
$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\begin{aligned} & \mathrm{H}_{0}: \mu_{D}=0 \\ & \mathrm{H}_{1}: \mu_{D}>0 \end{aligned}$ Where μ_{D} is the (population) mean reduction in absenteeism. Must assume Normality of differences.	B1	Both. Accept alternatives e.g. $\mu_{D}<0$ for H_{1}, or $\mu_{A}-\mu_{B}$ etc provided adequately defined. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=$..." or similar unless \bar{X} is clearly and explicitly stated to be a population mean. Hypotheses in words only must include "population".	4
(ii)	Differences (reductions) (before - after) $1 \cdot 7,0 \cdot 7,0 \cdot 6,-1 \cdot 3,0 \cdot 1,-0 \cdot 9,0 \cdot 6,-0 \cdot 7,0 \cdot 4,2 \cdot 7$, $\begin{aligned} & 0 \cdot 9 \\ & \bar{x}=0 \cdot 4364, s_{n 1}=1 \cdot 1518\left(s_{n 1}^{2}=1 \cdot 3265\right) \end{aligned}$ Test statistic is $\frac{0 \cdot 4364-0}{\left(\frac{1 \cdot 1518}{\sqrt{11}}\right)}$ $=1 \cdot 256(56 \ldots)$ Refer to t_{10}. Upper 5% point is 1.812 . $1 \cdot 256<1 \cdot 812, \therefore$ Result is not significant. Seems there has been no reduction in mean absenteeism.	B1 M1 A1 M1 A1 E1 E1	Allow "after - before" if consistent with alternatives above. Do not allow $s_{n}=1.098\left(s_{n}{ }^{2}=1 \cdot 205\right)$. Allow c's \bar{x} and/or $s_{n 1}$. Allow alternative: $0 \pm$ (c’s 1-812) \times $\frac{1.1518}{\sqrt{11}}(=-0.6293,0.6293)$ for subsequent comparison with \bar{x}. (Or $\bar{x} \pm($ c's 1.812$) \times \frac{1.1518}{\sqrt{11}}(=-$ $0 \cdot 1929,1 \cdot 0657$) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{x}$ scores M1A0, but ft . No ft from here if wrong. No ft from here if wrong. For alternative H_{1} expect $-1 \cdot 812$ unless it is clear that absolute values are being used. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	7

(b)	For "days lost after" $\bar{x}=4 \cdot 6182, s_{n 1}^{\sim}=1 \cdot 4851 \quad\left(s_{n 1}^{2}=2 \cdot 2056\right)$ $\begin{aligned} & \text { CI is given by } 4.6182 \pm \\ & \qquad \begin{array}{l} 2 \cdot 228 \\ \\ \quad \times \frac{1.4851}{\sqrt{11}} \\ =4.6182 \pm 0.9976=(3.620(6), 5 \cdot 615(8)) \end{array} \end{aligned}$	B1 M1 B1 M1 A1	Do not allow $s_{n}=1 \cdot 4160\left(s_{n}{ }^{2}=\right.$ 2•0051). ft c 's $\bar{x} \pm$. ft C's $S_{n 1}^{\sim}$. c.a.o. Must be expressed as an interval. ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.	
	Assume Normality of population of "days lost after". Since $3 \cdot 5$ lies outside the interval it seems that the target has not been achieved.	E1 E1		7
				18

4768
 Statistics 3

Q1 (a)	$\mathrm{P}(T>t)=\frac{k}{t^{2}}, \quad t \geq 1$,			
(i)	$\begin{aligned} & \mathrm{F}(t)=\mathrm{P}(T<t)=1-\mathrm{P}(T>t) \\ & \therefore \mathrm{F}(t)=1-\frac{k}{t^{2}} \\ & \mathrm{~F}(1)=0 \\ & \therefore 1-\frac{k}{1^{2}}=0 \\ & \therefore k=1 \end{aligned}$	M1 M1 A1	Use of $1-P(\ldots)$. Beware: answer given.	3
(ii)	$\begin{aligned} \mathrm{f}(t) & =\frac{\mathrm{d} \mathrm{~F}(t)}{\mathrm{d} t} \\ & =\frac{2}{t^{3}} \end{aligned}$	M1 A1	Attempt to differentiate c's cdf. (For $t \geq 1$, but condone absence of this.) Ft c's cdf provided answer sensible.	2
(iii)	$\begin{aligned} \mu & =\int_{1}^{\infty} f \mathrm{f}(t) \mathrm{d} t=\int_{1}^{\infty} \frac{2}{t^{2}} \mathrm{~d} t \\ & =\left[\frac{-2}{t}\right]_{1}^{\infty} \\ & =0-(-2)=2 \end{aligned}$	M1	Correct form of integral for the mean, with correct limits. Ft c's pdf. Correctly integrated. Ft c's pdf. Correct use of limits leading to correct value. Ft c's pdf provided answer sensible.	3
(b)	$\mathrm{H}_{0}: m=5.4$ $\mathrm{H}_{1}: m \neq 5.4$ where m is the population median time for the task. $W_{-}=1+2+4=7 \text { (or } W_{+}=$ $3+5+6+7+8+9+10=48)$ Refer to tables of Wilcoxon single sample (/paired) statistic for $n=10$. Lower (or upper if 48 used) double-tailed 5% point is 8 (or 47 if 48 used). Result is significant. Seems that the median time is no longer as previously thought.	B1	Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition. for subtracting 5.4. for ranks. FT if ranks wrong. No ft from here if wrong. i.e. a 2-tail test. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	10

Q2	$x \sim \mathrm{~N}(260, \sigma=24)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} & \mathrm{P}(X<300)=\mathrm{P}\left(Z<\frac{300-260}{24}=1.6667\right) \\ & =0.9522 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere.	3
(ii)	$\begin{aligned} & Y \sim \mathrm{~N}\left(260 \times 0.6=\begin{array}{l} 156, \\ 24^{2} \times 0.6^{2}=207.36 \end{array}\right. \\ & \mathrm{P}(Y>175)=\mathrm{P}\left(Z>\frac{175-156}{14.4}=1.3194\right) \\ & =1-0.9063=0.0937 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 14.4). c.a.o.	3
(iii)	$Y_{1}+Y_{2}+Y_{3}+Y_{4} \sim N(624,$ 829.44) $\begin{aligned} & \mathrm{P}(\text { this }<600)=\mathrm{P}\left(Z<\frac{600-624}{28.8}=-0.8333\right) \\ & =1-0.7976=0.2024 \end{aligned}$	B1 B1 A1	Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii). c.a.o.	3
(iv)	Require w such that $\begin{aligned} & 0.975=\mathrm{P}(\text { above }>w)=\mathrm{P}\left(Z>\frac{w-624}{28.8}\right) \\ & =\mathrm{P}(Z>-1.96) \\ & \therefore w-624=28.8 \times-1.96 \Rightarrow w=567.5(52) \end{aligned}$	M1 B1 A1	Formulation of requirement. -1.96 Ft parameters of (iii).	3
(v)	$\begin{aligned} & \mathrm{On} \sim \mathrm{~N}(150, \sigma=18) \\ & X_{1}+X_{2}+X_{3}+\mathrm{On}_{1}+\mathrm{On} 2 \sim \mathrm{~N}(1080, \\ & \mathrm{P}(\text { this }>1000)=\mathrm{P}\left(Z>\frac{1000-1080}{48.744}=-1.6412\right) \\ & =0.9496 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 48.744). c.a.o.	3
(vi)	Given $\quad \bar{x}=252.4 \quad s_{n-1}=24.6$ Cl is given by $\quad 252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$ $=252.4 \pm 6.33(6)=(246.0(63), 258.7(36))$	M1 B1 A1	Correct use of 252.4 and 24.6/ $\sqrt{100}$. For 2.576. c.a.o. Must be expressed as an interval.	3
				18

4768 Statistics 3

Q1	$f(x)=k(20-x) \quad 0 \leq x \leq 20$			
(a) (i)	$\begin{aligned} & \int_{0}^{20} k(20-x) \mathrm{d} x=\left[k\left(20 x-\frac{x^{2}}{2}\right)\right]_{0}^{20}=k \times 200=1 \\ & \therefore k=\frac{1}{200} \end{aligned}$ Straight line graph with negative gradient, in the first quadrant. Intercept correctly labelled (20, 0), with nothing extending beyond these points. Sarah is more likely to have only a short time to wait for the bus.	M1 A1 G1 G1 E1	Integral of $\mathrm{f}(x)$, including limits (which may appear later), set equal to 1. Accept a geometrical approach using the area of a triangle. C.a.o.	5
(ii)	$\begin{aligned} \text { Cdf } \begin{aligned} & \mathrm{F}(x)=\int_{0}^{x} \mathrm{f}(t) \mathrm{d} t \\ &=\frac{1}{200}\left(20 x-\frac{x^{2}}{2}\right) \\ &=\frac{x}{10}-\frac{x^{2}}{400} \\ & \begin{aligned} \mathrm{P}(X>10) & =1-\mathrm{F}(10) \\ & =1-(1-1 / 4)=1 / 4 \end{aligned} \end{aligned} \begin{aligned} \\ \end{aligned} \\ \end{aligned}$	M1 A1 M1 A1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen. Or equivalent expression; condone absence of domain [0, 20]. Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area $=1 / 2(20-10) f(10)$, or similarity.	4
(iii)	Median time, m, is given by $F(m)=1 / 2$. $\begin{aligned} & \therefore \frac{m}{10}-\frac{m^{2}}{400}=\frac{1}{2} \\ & \therefore m^{2}-40 m+200=0 \\ & \therefore m=5.86 \end{aligned}$	M1 M1 A1	Definition of median used, leading to the formation of a quadratic equation. Rearrange and attempt to solve the quadratic equation. Other solution is 34.14 ; no explicit reference to/rejection of it is required.	3

(b) (i)	A simple random sample is one where every sample of the required size has an equal chance of being chosen.	E2	S.C. Allow E1 for "Every member of the population has an equal chance of being chosen independently of every other member".	2
(ii)	Identify clusters which are capable of representing the population as a whole. Choose a random sample of clusters. Randomly sample or enumerate within the chosen clusters.	E1 E1	E1	
(iii)	A random sample of the school population might involve having to interview single or small numbers of pupils from a large number of schools across the entire country. Therefore it would be more practical to use a cluster sample.	E1	E1	For "practical" accept e.g. convenient / efficient / economical.

Q2	$\begin{aligned} & A \sim \mathrm{~N}(100, \quad \sigma=1.9) \\ & B \sim \mathrm{~N}(50, \quad \sigma=1.3) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(A<103) & =\mathrm{P}\left(Z<\frac{103-100}{1.9}=1.5789\right) \\ & =0.9429 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	$\begin{aligned} & A_{1}+A_{2}+A_{3} \sim \mathrm{~N}(300, \\ & \mathrm{P}(\text { this }>306)= \\ & \mathrm{P}\left(Z>\frac{\left.\sigma^{2}=1.9^{2}+1.9^{2}+1.9^{2}=10.83\right)}{3 \cdot 291}=1 \cdot 823\right)=1-0 \cdot 9658=0.0342 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 3.291). c.a.o.	3
(iii)	$\begin{aligned} & A+B \sim \mathrm{~N}(150, \\ & \left.\quad \sigma^{2}=1.9^{2}+1.3^{2}=5.3\right) \\ & \mathrm{P}(\text { this }>147)=\mathrm{P}\left(Z>\frac{147-150}{2 \cdot 302}=-1.303\right) \\ & \quad=0.9037 \end{aligned}$	B1 B1 A1	Mean. Variance. Accept sd (= 2.302). c.a.o.	3
(iv)	$\begin{aligned} & B_{1}+B_{2}-A \sim N(0, \\ & \left.\quad 1 \cdot 3^{2}+1 \cdot 3^{2}+1 \cdot 9^{2}=6 \cdot 99\right) \\ & \mathrm{P}(-3<\text { this }<3) \\ & =\mathrm{P}\left(\frac{-3-0}{2.644}<Z<\frac{3-0}{2.644}\right)=\mathrm{P}(-1 \cdot 135<Z<1 \cdot 135) \\ & =2 \times 0.8718-1=0.7436 \end{aligned}$	B1 B1 M1 A1 A1	Mean. Or $A-\left(B_{1}+B_{2}\right)$. Variance. Accept sd (= 2.644). Formulation of requirement two sided. c.a.o.	5
(v)	Given $\quad \bar{x}=302.3 \quad s_{n-1}=3.7$ Cl is given by $\quad 302.3 \pm 1.96 \times \frac{3.7}{\sqrt{100}}$ $\begin{aligned} & =302 \cdot 3 \pm 0 \cdot 7252=(301 \cdot 57(48) \\ & 303 \cdot 02(52)) \end{aligned}$ The batch appears not to be as specified since 300 is outside the confidence interval.	M1 B1 A1 E1	Correct use of 302.3 and $3.7 / \sqrt{100} .$ For 1.96 c.a.o. Must be expressed as an interval.	4
				18

Q3				
$\begin{aligned} & \text { (a) } \\ & \text { (i) } \end{aligned}$	$\mathrm{H}_{0}: \mu_{D}=0$ $\left(\right.$ or $\left.\mu_{l}=\mu_{l l}\right)$ $\mathrm{H}_{1}: \mu_{D} \neq 0$ $\left(\right.$ or $\left.\mu_{l l} \neq \mu_{l}\right)$ where μ_{D} is "mean for II - mean for I" Normality of differences is required.	B1 B1 B1	Both. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}_{I}=\bar{X}_{I I}$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	3
(ii)	MUST be PAIRED COMPARISON t test. Differences are: $\bar{d}=11.6 \quad s_{n-1}=17.707$ Test statistic is $\frac{11.6-0}{\frac{17.707}{\sqrt{ } 8}}$ $=1.852(92)$ Refer to t_{7}. Double-tailed 5% point is 2.365 . Not significant. Seems there is no difference between the mean yields of the two types of plant.	16.3 M1 A1 M1 A1 A1 A1	11.5 $s_{n}=16.563$ but do NOT allow this here or in construction of test statistic, but FT from there. Allow c's \bar{d} and/or s_{n-1}. Allow alternative: 0 + (c's 2.365) $\times \frac{17.707}{\sqrt{8}}(=14.806)$ for subsequent comparison with \bar{d}. (Or \bar{d} - (c's 2.365$) \times \frac{17.707}{\sqrt{8}}$ (=-3.206) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{d}$ scores M1A0, but ft. No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_{8} and 2.306) can score 1 of these last 2 marks if either form of conclusion is given.	7

4768 Statistics 3

Q1 (a)	$\mathrm{f}(x)=\lambda x^{c}, 0 \leq x \leq 1, \lambda>1$			
(i)	$\begin{aligned} & \int_{0}^{1} \lambda x^{c} \mathrm{~d} x=1 \\ & \therefore\left[\frac{\lambda x^{c+1}}{c+1}\right]_{0}^{1}=1 \\ & \therefore \frac{\lambda}{c+1}=1 \quad \therefore c=\lambda-1 \end{aligned}$	M1 M1 A1	Correct integral, with limits (possibly appearing later), set equal to 1 . Integration correct and limits used. c.a.o.	3
(ii)	$\begin{aligned} \mathrm{E}(X) & =\int_{0}^{1} \lambda x^{\lambda} \mathrm{d} x \\ & =\left[\frac{\lambda x^{\lambda+1}}{\lambda+1}\right]_{0}^{1}=\frac{\lambda}{\lambda+1} \end{aligned}$	M1 M1 A1	Correct form of integral for $\mathrm{E}(X)$. Allow c's expression for c. Integration correct and limits used. ft c's c.	3
(iii)	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)=\int_{0}^{1} \lambda x^{\lambda+1} \mathrm{~d} x \\ & \quad=\left[\frac{\lambda x^{\lambda+2}}{\lambda+2}\right]_{0}^{1}=\frac{\lambda}{\lambda+2} . \\ & \operatorname{Var}(X)=\frac{\lambda}{\lambda+2}-\left(\frac{\lambda}{\lambda+1}\right)^{2}=\frac{\lambda(\lambda+1)^{2}-\lambda^{2}(\lambda+2)}{(\lambda+2)(\lambda+1)^{2}} \\ & =\frac{\lambda^{3}+2 \lambda^{2}+\lambda-\lambda^{3}-2 \lambda^{2}}{(\lambda+2)(\lambda+1)^{2}}=\frac{\lambda}{(\lambda+2)(\lambda+1)^{2}} . \end{aligned}$	M1 A1 M1 A1	Correct form of integral for $\mathrm{E}\left(X^{2}\right)$. Allow c's expression for c. Use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$. Allow c's $\mathrm{E}\left(X^{2}\right)$ and $\mathrm{E}(X)$. Algebra shown convincingly. Beware printed answer.	4
(b)	Times -32 Rank of (diff\| 40 8 4 20 -12 7 18 -14 8 11 -21 12 47 15 9 36 4 2 38 6 3 35 3 1 22 -10 5 14 -18 10 12 -20 11 21 -11 6$W_{+}=1+2+3+4+9=19$ Refer to Wilcoxon single sample tables for $n=12$. Lower (or upper if 59 used) 5% tail is 17 (or 61 if 59 used). Result is not significant. Seems that there is no evidence that Godfrey's times have decreased.	M1 M1 A1 B1 M1 A1 A1 A1	$\mathrm{H}_{0}: m=32, \quad \mathrm{H}_{1}: m<32$, where m is the population median time. for subtracting 32. for ranks. ft if ranks wrong. $\begin{aligned} & \text { (or } W_{-}=5+6+7+8+10+11+12 \\ & =59 \text {) } \end{aligned}$ No ft from here if wrong. i.e. a 1-tail test. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	8
				18

\begin{tabular}{|c|c|c|c|c|}
\hline Q2 \& \[
\begin{aligned}
\& V_{G} \sim \mathrm{~N}\left(56.5,2.9^{2}\right) \\
\& V_{W} \sim \mathrm{~N}\left(38.4,1.1^{2}\right)
\end{aligned}
\] \& \& When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. \& \\
\hline (i) \& \[
\begin{aligned}
\& \mathrm{P}\left(V_{G}<60\right)=\mathrm{P}\left(Z<\frac{60-56.5}{2.9}=1.2069\right) \\
\& =0.8862
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& For standardising. Award once, here or elsewhere. \& 3 \\
\hline (ii) \& \[
\begin{aligned}
\& V_{T} \sim \mathrm{~N}(56.5+38.4=94.9, \\
\& \mathrm{P}(\text { this }>100)=\mathrm{P}\left(Z>\frac{100-94.9}{3.1016}=1.6443\right) \\
\& =1-0.9499=0.0501
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Mean. \\
Variance. Accept sd (= 3.1016). \\
c.a.o.
\end{tabular} \& 3 \\
\hline (iii) \& \[
\begin{aligned}
\& W_{T} \sim \mathrm{~N}(3.1 \times 56.5+0.8 \times 38.4=205.87, \\
\& \left.\quad 3.1^{2} \times 2.9^{2}+0.8^{2} \times 1.1^{2}=81.5945\right) \\
\& \mathrm{P}(200<\text { this }<220) \\
\& =\mathrm{P}\left(\frac{200-205.87}{9.0330}<Z<\frac{220-205.87}{9.0330}\right) \\
\& =\mathrm{P}(-0.6498<Z<1.5643) \\
\& =0.9411-(1-0.7422)=0.6833
\end{aligned}
\] \& M1
A1
M1
A1
M1

A1 \& | Use of "mass $=$ density \times volume" Mean. |
| :--- |
| Variance. Accept sd (= 9.0330). |
| Formulation of requirement. |
| c.a.o. | \& 6

\hline (iv) \& | Given $\quad \bar{x}=205.6 \quad s_{n-1}=8.51$ |
| :--- |
| $\mathrm{H}_{0}: \mu=200, \mathrm{H}_{1}: \mu>200$ |
| Test statistic is $\frac{205.6-200}{\frac{8.51}{\sqrt{10}}}$ $=2.081$ |
| Refer to t_{9}. |
| Single-tailed 5\% point is 1.833 . |
| Significant. |
| Seems that the required reduction of the mean weight has not been achieved. | \& M1

A1

M1

A1
A1

A1 \& | Allow alternative: 200 + (c's 1.833) $\times \frac{8.51}{\sqrt{10}}(=204.933)$ for subsequent comparison with \bar{x}. |
| :--- |
| (Or $\bar{x}-\left(c^{\prime} s 1.833\right) \times \frac{8.51}{\sqrt{10}}$ |
| (= 200.667) for comparison with 200.) |
| c.a.o. but ft from here in any case if wrong. |
| Use of $200-\bar{x}$ scores M1A0, but ft . |
| No ft from here if wrong. $\mathrm{P}(t>2.081)=0.0336$. |
| No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. | \& 6

\hline \& \& \& \& 18

\hline
\end{tabular}

Q3				
(i)	In this situation a paired test is appropriate because there are clearly differences between specimens which the pairing eliminates.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$		2
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{D}=0 \\ & \mathrm{H}_{1}: \mu_{D}>0 \end{aligned}$ Where μ_{D} is the (population) mean reduction in hormone concentration. Must assume - Sample is random - Normality of differences	B1 B1 B1 B1	Both. Accept alternatives e.g. $\mu_{D}<0$ for H_{1}, or $\mu_{A}-\mu_{B}$ etc provided adequately defined. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean.	4
(iii)	MUST be PAIRED COMPARISON t test. Differences (reductions) (before - after) are $\begin{array}{lllllll} -0.75 & 2.71 & 2.59 & 6.07 & 0.71 & -1.85 & -0.98 \\ 3.56 \\ \bar{x}=1.65 & s_{n-1}=2.100(3) & \left(s_{n-1}^{2}=4.4112\right) \end{array}$ Test statistic is $\frac{1.65-0}{\frac{2.100}{\sqrt{ } 15}}$ = 3.043. Refer to t_{14}. Single-tailed 1\% point is 2.624 . Significant. Seems mean concentration of hormone has fallen.	1.77 B1 M1 A1 M1 A1 A1 A1	Allow "after - before" if consistent with alternatives above. $\begin{array}{llllll}2.95 & 1.59 & 4.17 & 0.38 & 0.88 & 0.95\end{array}$ Do not allow $s_{\mathrm{n}}=2.0291\left(s_{n}{ }^{2}=\right.$ 4.1171) Allow c's \bar{x} and/or s_{n-1}. Allow alternative: 0 + (c's 2.624) \times $\frac{2.100}{\sqrt{15}}(=1.423)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-\left(c^{\prime} s 2.624\right) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{x}$ scores M1A0, but ft . No ft from here if wrong. $\mathrm{P}(t>3.043)=0.00438$. No ft from here if wrong. ft only c 's test statistic. ft only c's test statistic.	7
(iv)	CI is $1.65 \pm$ $\begin{array}{r} k \times \frac{2.100}{\sqrt{15}} \quad=(0.4869,2.8131) \end{array}$ $\therefore k=2.145$ By reference to t_{14} tables this is a 95\% CI.	M1 M1 A1 A1 A1	ft c's $\bar{x} \pm$. ft c's $s_{n 1}$. A correct equation in k using either end of the interval or the width of the interval. Allow ft c 's \bar{x} and $s_{n 1}$. c.a.o.	5
				18

Q4				
(i)	Sampling which selects from those that are (easily) available. Circumstances may mean that it is the only economically viable method available. Likely to be neither random nor representative.	E1 E1 E1		3
(ii)	$\begin{aligned} & p+p q+p q^{2}+p q^{3}+p q^{4}+p q^{5}+q^{6} \\ & =\frac{p\left(1-q^{6}\right)}{1-q}+q^{6}=\frac{p\left(1-q^{6}\right)}{p}+q^{6} \\ & =1-q^{6}+q^{6}=1 \end{aligned}$	M1 A1	Use of GP formula to sum probabilities, or expand in terms of p or in terms of q. Algebra shown convincingly. Beware answer given.	2
(iii)	With $p=0.25$ $\begin{aligned} X^{2} & =0.04+0.0033+0.6136+0.5706+1.2069 \\ & +0.7204+7.8206 \\ & =10.97(54) \end{aligned}$ (If e.g. only 2dp used for expected f's then $\begin{aligned} X^{2} & =0.04+0.0033+0.6148+0.5690+1.2071 \\ & +0.7226+7.8225 \\ & =10.97(93)) \end{aligned}$ Refer to χ_{6}^{2}. Upper 10\% point is 10.64 . Significant. Suggests model with $p=0.25$ does not fit.		9 0.079102 0.059326 0.177979 7.9102 5.9326 17.7979 Probabilities correct to 3 dp or better. $\times 100$ for expected frequencies. All correct and sum to 100 . c.a.o. Allow correct df (= cells -1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>10.975\right)=0.0891$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	9
(iv)	Now with $X^{2}=9.124$ Refer to χ_{5}^{2}. Upper 10\% point is 9.236 . Not significant. (Suggests new model does fit.) Improvement to the model is due to estimation of p from the data.	M1 A1 A1 E1	Allow correct df (= cells - 2) from wrongly grouped table and ft. Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>9.124\right)=0.1042$ No ft from here if wrong. Correct conclusion. Comment about the effect of estimated p, consistent with conclusion in part (iii).	4
				18

4768 Statistics 3

\begin{tabular}{|c|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& W \sim N(14,0.552) \\
\& G \sim N(144, \\
\& \left.\hline 0.9^{2}\right)
\end{aligned}
\] \& \& When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. \& \\
\hline \& \[
\begin{aligned}
\mathrm{P}(G<145) \& =\mathrm{P}\left(\mathrm{Z}<\frac{145-144}{0.9}=1.1111\right) \\
\& =0.8667
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { A1 } \\
\& \text { A1 }
\end{aligned}
\] \& \begin{tabular}{l}
For standardising. Award once, here or elsewhere. \\
c.a.o.
\end{tabular} \& \\
\hline \& \[
\begin{aligned}
\& W+G \sim \mathrm{~N}(14+144=158, \\
\& \left.\qquad \sigma^{2}=0.55^{2}+0.9^{2}=1.1125\right) \\
\& \mathrm{P}(\text { this }>160)= \\
\& \mathrm{P}\left(Z>\frac{160-158}{1.0547}=1.896\right)=1-0.9710=0.0290
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Mean. \\
Variance. Accept sd (= 1.0547...). \\
c.a.o.
\end{tabular} \& 3 \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& H=W_{1}+\ldots+W_{7}+G_{1}+\ldots+G_{6} \sim \mathrm{~N}(962, \\
\& \left.\sigma^{2}=0.55^{2}+\ldots+0.5^{2}+0.9^{2}+\ldots+0.9^{2}=6.9775\right) \\
\& \mathrm{P}(960<\text { this }<965)= \\
\& \begin{aligned}
\mathrm{P}\left(\frac{960-962}{2 \cdot 6415}\right. \& \left.=-0.7571<\mathrm{Z}<\frac{965-962}{2 \cdot 6415}=1.1357\right) \\
\& =0.8720-(1-0.7755)=0.6475
\end{aligned}
\end{aligned}
\] \\
Now want \(P(B(4,0.6475) \geq 3)\)
\[
\begin{aligned}
\& =4 \times 0.6475^{3} \times 0.3525+0.6475^{4} \\
\& =0.38277+0.17577=0.5585
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
M1 \\
M1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Mean. \\
Variance. Accept sd (= 2.6415). \\
Two-sided requirement. \\
c.a.o. \\
Evidence of attempt to use binomial. \\
ft c's \(p\) value. \\
Correct terms attempted. ft c's \(p\) \\
value. Accept \(1-\mathrm{P}(\ldots \leq 2)\) \\
c.a.o.
\end{tabular} \& \\
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
D=H_{1}-H_{2} \sim \mathrm{~N} \& (0, \\
\& 6.9775+6.9775=13.955)
\end{aligned}
\] \\
Want \(h\) s.t. \(\mathrm{P}(-h<D<h)=0.95\) \\
i.e. \(P(D<h)=0975\)
\[
\therefore h=\sqrt{13.955} \times 1.96=7.32
\]
\end{tabular} \& B1
B1
M1

B1

A1 \& | Mean. (May be implied.) |
| :--- |
| Variance. Accept sd (= 3.7356). Ft $2 \times$ c's 6.9775 from (iii). Formulation of requirement as 2-sided. |
| For 1.96. |
| c.a.o. | \& 5

\hline \& \& \& \& 18

\hline
\end{tabular}

			All correct.	
(iv) $2 \times 1.96 \times \sqrt{\frac{0.006}{n}}<0.025$	M1	Set up appropriate inequation. Condone an equation. So take $n=148$ Attempt to rearrange and solve.	A1.96 $)^{2} \times 0.006=147.517$	Ata.o. (expressed as an integer). S.C. Allow max M1A1(c.a.o.) when the factor "2" is missing. $(n>36.879)$
			3	

Q4	$\mathrm{f}(x)=\frac{2 x}{\lambda^{2}} \text { for } 0<x<\lambda, \lambda>0$			
(i)	$\mathrm{f}(x)>0$ for all x in the domain. $\int_{0}^{\lambda} \frac{2 x}{\lambda^{2}} \mathrm{~d} x=\left[\frac{x^{2}}{\lambda^{2}}\right]_{0}^{\lambda}=\frac{\lambda^{2}}{\lambda^{2}}=1$	$\begin{aligned} & \text { E1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Correct integral with limits. Shown equal to 1.	3
(ii)	$\begin{gathered} \mu=\int_{0}^{\lambda} \frac{2 x^{2}}{\lambda^{2}} \mathrm{~d} x=\left[\frac{2 x^{3} / 3}{\lambda^{2}}\right]_{0}^{\lambda}=\frac{2 \lambda}{3} \\ \mathrm{P}(X<\mu)=\int_{0}^{\mu} \frac{2 x}{\lambda^{2}} \mathrm{~d} x=\left[\frac{x^{2}}{\lambda^{2}}\right]_{0}^{\mu} \\ =\frac{\mu^{2}}{\lambda^{2}}=\frac{4 \lambda^{2} / 9}{\lambda^{2}}=\frac{4}{9} \end{gathered}$ which is independent of λ.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Correct integral with limits. c.a.o. Correct integral with limits. Answer plus comment. ft c's μ provided the answer does not involve λ.	4
(iii)	$\begin{aligned} & \text { Given } \mathrm{E}\left(X^{2}\right)=\frac{\lambda^{2}}{2} \\ & \sigma^{2}=\frac{\lambda^{2}}{2}-\frac{4 \lambda^{2}}{9}=\frac{\lambda^{2}}{18} \end{aligned}$	M1 A1	Use of $\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}$. c.a.o.	2
(iv)	Probability 0.18573 0.25871 Expected f 9.2865 12.9355$\begin{aligned} X^{2} & =3.0094+0.2896+0.1231+3.5152 \\ & =6.937(3) \end{aligned}$ Refer to χ_{3}^{2}. Upper 5\% point is 7.815 . Not significant. Suggests model fits the data for these jars. But with a 10% significance level (cv = 6.251) a different conclusion would be reached.	0.36983 18.4915 $\left\lvert\, \begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { E1 }\end{aligned}\right.$	0.18573 9.2865 Probs $\times 50$ for expected frequencies. All correct. Calculation of X^{2}. c.a.o. Allow correct df (= cells - 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>6.937\right)=0.0739 .$ No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Any valid comment which recognises that the test statistic is close to the critical values.	9
				18

4768 Statistics 3

1 (i)	H_{0} : The number of by $B(3,1 / 2)$ H_{1} : The number of modelled by B(3 With $p=1 / 2$ $\begin{aligned} X^{2} & =0.9+1.6333 \\ & =14.666(7) \end{aligned}$ Refer to χ_{3}^{2}. Upper 5\% point is 7 Significant. Suggests it is reason $=1 / 2$ does not ap	hatched hatched $.0333+$	be modelled ot be model with p	B1 B1 0.375 M1 A1 M1 A1 M1 A1 A1 A1	0.125 10 Probs $\times 80$ for expected frequencies. All correct. Calculation of X^{2}. c.a.o. Allow correct df (= cells - 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>14.667\right)=0.00212$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	[10]
(ii)	$\begin{aligned} & \bar{x}=\frac{144}{80}=1.8 \\ & \therefore \hat{p}=\frac{1.8}{3}=0.6 \end{aligned}$			$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	C.a.o. Use of $\mathrm{E}(X)=n p$. ft c's mean, provided $0<\hat{p}<1$.	[2]
(iii)	Refer to χ_{2}^{2}. Upper 5\% point is 5 Suggests it is reason estimated p does ap	to supp	odel with	M1 A1 A1	Allow df 1 less than in part (i). No ft if wrong. No ft if wrong. ft provided previous A mark awarded.	[3]
(iv)	For example: Estimating p leads ... at the expense of freedom. The model in (i) fail underestimate for X	mprov oss of to a la	ree of	E2	Reward any two sensible points for E1 each. Total	[2]

\begin{tabular}{|c|c|c|c|c|}
\hline \[
2 \text { (a) }
\]
(i) \& \[
\begin{aligned}
\& \mathrm{f}(x)=\frac{1}{72}\left(8 x-x^{2}\right), 2 \leq x \leq 8 \\
\& \mathrm{~F}(x)=\int_{2}^{x} \frac{1}{72}\left(8 t-t^{2}\right) \mathrm{d} t \\
\& =\frac{1}{72}\left[4 t^{2}-\frac{t^{3}}{3}\right]_{2}^{x} \\
\& =\frac{1}{72}\left(4 x^{2}-\frac{x^{3}}{3}-16+\frac{8}{3}\right)=\frac{12 x^{2}-x^{3}-40}{216}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& \begin{tabular}{l}
Correct integral with limits (which may be implied subsequently). \\
Correctly integrated \\
Limits used. \\
Accept unsimplified form.
\end{tabular} \& [3] \\
\hline (ii) \& \& G1
G1
G1 \& \begin{tabular}{l}
Correct shape; nothing below \(y=0\); non-negative gradient. \\
Labels at \((2,0)\) and \((8,1)\). \\
Curve (horizontal lines) shown for \(x<2\) and \(x>8\).
\end{tabular} \& [3] \\
\hline (iii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{F}(m)=1 / 2 \quad \therefore \frac{12 m^{2}-m^{3}-40}{216}=\frac{1}{2} \\
\& \therefore 12 m^{2}-m^{3}-40=108 \\
\& \therefore m^{3}-12 m^{2}+148=0
\end{aligned}
\] \\
Either
\[
\mathrm{F}(4.42)=0.5003(977) \approx 0.5
\] \\
Or
\[
\begin{aligned}
\& 4.42^{3}-12 \times 4.42^{2}+148=-0.0859(12) \approx 0 \\
\& \therefore m \approx 4.42
\end{aligned}
\]
\end{tabular} \& M1
A1

E1 \& | Use of definition of median. Allow use of c's $\mathrm{F}(x)$. |
| :--- |
| Convincingly rearranged. |
| Beware: answer given. |
| Convincingly shown, e.g. 4.418 or better seen. | \& [3]

\hline
\end{tabular}

2 (b) $\quad \mathrm{H}_{0}: m=4.42 \quad \mathrm{H}_{1}: m \neq 4.42$
where m is the population median

Weights	-4.42	Rank of diff
3.16	-1.26	7
3.62	-0.80	6
3.80	-0.62	4
3.90	-0.52	3
4.02	-0.40	2
4.72	0.30	1
5.14	0.72	5
6.36	1.94	8
6.50	2.08	9
6.58	2.16	10
6.68	2.26	11
6.78	2.36	12

$W_{-}=2+3+4+6+7=22$
Refer to Wilcoxon single sample tables for $n=12$.
Lower $2 \frac{1}{2} \%$ point is 13 (or upper is 65 if 56 used).
Result is not significant.
Evidence suggests that a median of 4.42 is consistent with these data.

B1 Both. Accept hypotheses in words.
B1 Adequate definition of m to include "population".

M1 for subtracting 4.42.

M1 for ranks.
A1 ft if ranks wrong.

B1 $\quad\left(W_{+}=1+5+8+9+10+11+12\right.$ = 56)
No ft from here if wrong.
i.e. a 2-tail test. No ft from here if wrong.
A1 ft only c's test statistic.
A1 ft only c's test statistic.

3 (i)	Must assume - Normality of population ... - ... of differences. $\mathrm{H}_{0}: \mu_{\mathrm{D}}=0$ $\mathrm{H}_{1}: \mu_{\mathrm{D}}>0$ Where μ_{D} is the (population) mean reduction/difference in cholesterol level. MUST be PAIRED COMPARISON t test. Differences (reductions) (before - after) are: $\begin{array}{llllllll} -0.1 & 1.7 & -1.2 & 1.1 & 1.4 & 0.5 & 0.9 & 2.2 \\ -0.1 & 2.0 & 0.7 & 0.3 & & & & \\ \bar{x}=0.7833 & s_{n-1}=0.9833(46) \end{array}\left(s_{n-1}{ }^{2}=0.966969\right) ~ \$$ Test statistic is $\frac{0.7833-0}{\frac{0.9833}{\sqrt{ } 12}}$ $=2.7595$ Refer to t_{11}. Single-tailed 1\% point is 2.718 . Significant. Seems mean cholesterol level has fallen.	B1 B1 B1 B1 B1 M1 A1 M1 A1 A1 A1	Both. Accept alternatives e.g. $\mu_{D}<$ 0 for H_{1}, or $\mu_{B}-\mu_{A}$ etc provided adequately defined. Hypotheses in words only must include "population". Do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used. Allow "after - before" if consistent with alternatives above. Do not allow $s_{\mathrm{n}}=0.9415\left(s_{n}{ }^{2}=\right.$ 0.8864) Allow c's \bar{x} and/or s_{n-1}. Allow alternative: 0 + (c’s 2.718) \times $\frac{0.9833}{\sqrt{12}}(=0.7715)$ for subsequent comparison with \bar{X}. (Or $\bar{x}-(c$'s 2.718$) \times \frac{0.9833}{\sqrt{12}}$ (= 0.0118) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. Use of $0-\bar{x}$ scores M1A0, but ft. No ft from here if wrong. $\mathrm{P}(t>2.7595)=0.009286$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.	
(ii)	$\begin{aligned} & \text { CI is } \bar{x} \pm \\ & \quad \times \frac{s}{\sqrt{12}}=(-0.5380,1.4046) \\ & \bar{x}=1 / 2(1.4046-0.5380)=0.4333 \\ & s=(1.4046-0.4333) \times \frac{\sqrt{12}}{2.201} \quad=1.5287 \end{aligned}$ Using this interval the doctor might conclude that the mean cholesterol level did not seem to have been reduced.	M1 B1 A1 B1 M1 A1 E1	Overall structure, seen or implied. From t_{11}, seen or implied. Fully correct pair of equations using the given interval, seen or implied. Substitute \bar{x} and rearrange to find s. c.a.o. Accept any sensible comment or interpretation of this interval.	[7]

4 (i)	$\begin{aligned} & A \sim \mathrm{~N}(80, \sigma=11) \\ & B \sim \mathrm{~N}(70, \sigma=v) \end{aligned}$ $\begin{aligned} \mathrm{P}(A<90) & =\mathrm{P}\left(\mathrm{Z}<\frac{90-80}{11}=0.9091\right) \\ & =0.8182 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only. For standardising. Award once, here or elsewhere. c.a.o.	[3]
(ii)	$\left.\begin{array}{l} \begin{array}{r} W_{B}=B_{1}+B_{2}+\ldots+B_{6}+15 \sim \mathrm{~N}(435, \\ \\ \left.\sigma^{2}=v^{2}+v^{2}+\ldots+v^{2}=6 v^{2}\right) \end{array} \\ \mathrm{P}(\text { this }<450)=\mathrm{P}\left(\mathrm{Z}<\frac{450-435}{v \sqrt{6}}\right)=0.8463 \end{array}\right] \begin{aligned} & \therefore \frac{450-435}{v \sqrt{6}}=\Phi^{-1}(0.8463)=1.021 \\ & \therefore v=\frac{15}{1.021 \times \sqrt{6}}=5.9977=6 \text { grams (nearest gram) } \end{aligned}$	B1 B1 M1 B1 A1	Mean. Expression for variance. Formulation of the problem. Inverse Normal. Convincingly shown, beware A.G.	[5]
(iii)	$\begin{gathered} W_{A}=A_{1}+A_{2}+\ldots+A_{5}+25 \sim \mathrm{~N}(425, \\ \left.\sigma^{2}=11^{2}+11^{2}+\ldots+11^{2}=605\right) \\ D=W_{A}-W_{B} \sim \mathrm{~N}(-10, \\ 605+216=821) \end{gathered}$ Want $\mathrm{P}\left(W_{A}>W_{B}\right)=\mathrm{P}\left(W_{A}-W_{B}>0\right)$ $=\mathrm{P}\left(Z>\frac{0-(-10)}{\sqrt{821}}=0.3490\right)=1-0.6365=0.3635$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Mean. Accept " $B-A$ ". Variance. Accept sd (= 28.65). c.a.o.	[5]
(iv)	$\begin{aligned} & \bar{x}=\frac{3126.0}{60}=52.1, \\ & s=\sqrt{\frac{164223.96-60 \times 52.1^{2}}{59}}=4.8 \end{aligned}$ CI is given by $\begin{array}{rc} 52.1 \pm & \\ & 1.96 \\ & \times \frac{4.8}{\sqrt{60}} \\ =52.1 \pm 1.2146=(50.885(4), 53.314(6)) \end{array}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Both correct. c.a.o. Must be expressed as an interval. Total	[5]

Q1	$\mathrm{D} \sim \mathrm{N}(2018, \sigma=96)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	Systematic Sampling. It lacks any element of randomness. Choose a random starting point in the range $1-10$.	B1 E1 E1	May be implied by the next mark. Allow reasonable alternatives e.g. "the list may contain cycles." Beware proposals for a different sampling method.	[3]
(ii)	$\begin{aligned} \mathrm{P}(D>2100) & =\mathrm{P}\left(Z>\frac{2100-2018}{96}=0.8542\right) \\ & =1-0.8034=0.1966 \end{aligned}$	M1 A1 A1	For standardising. Award once, here or elsewhere. c.a.o.	[3]
(iii)	$\begin{aligned} & D_{1}+D_{2}+D_{3} \sim \mathrm{~N}(6054, \\ &\left.\sigma^{2}=96^{2}+96^{2}+96^{2}=27648\right) \\ & \mathrm{P}(\text { this }<6000)=\mathrm{P}\left(Z<\frac{6000-6054}{166.277}=-0.3248\right) \\ &= 1-0.6273=0.3727 \end{aligned}$ Must assume that the months are independent. This is unlikely to be realistic since e.g. consecutive months may not be independent.	B1 B1 A1 E1 E1	Mean. Variance. Accept sd (= 166.277). c.a.o. Reference to independence of months. Any sensible comment.	[5]
(iv)	$\begin{aligned} & \text { Claim } \sim \mathrm{N}(2018 \times 0.45+21200 \times 0.10=3028.10, \\ & \qquad 96^{2} \times 0.45^{2}+1100^{2} \times 0.10^{2}=13966.24 \\ & \mathrm{P}(3000<\text { this }<3300) \\ & =\mathrm{P}\left(\frac{3000-3028.1}{118.18}<Z<\frac{3300-3028.1}{118.18}\right) \\ & =\mathrm{P}(-0 \cdot 2378<Z<2.3008) \\ & =0.9893-(1-0.5940)=0.5833 \end{aligned}$	M1 A1 M1 A1 M1 A1 A1	Mean. c.a.o. Variance. Accept sd (= 118.18). c.a.o. Formulation of requirement: a two-sided inequality. Ft c's parameters. c.a.o.	[7]
			Total	[18]

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Q2} \\
\hline (i) \& \begin{tabular}{l}
A \(t\) test might be used because \\
- sample is small \\
- population variance is unknown \\
Must assume background population is Normal.
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 } \\
\& \text { B1 } \\
\& \text { B1 }
\end{aligned}
\] \& \& [3] \\
\hline (ii) \& \begin{tabular}{l}
\[
\begin{aligned}
\& \mathrm{H}_{0}: \mu=1.040 \\
\& \mathrm{H}_{1}: \mu \neq 1.040
\end{aligned}
\] \\
where \(\mu\) is the mean specific gravity of the mixture.
\[
\bar{x}=1.0452 \quad s_{n-1}=0.007155
\] \\
Test statistic is \(\frac{1.0452-1.040}{\frac{0.007155}{\sqrt{ } 9}}\)
\[
=2.189(60)
\] \\
Refer to \(t_{8}\). \\
Double-tailed \(10 \%\) point is 1.860 . \\
Significant. \\
Seems mean specific gravity in the mixture does not meet the requirement.
\end{tabular} \& B1 \& \begin{tabular}{l}
Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " \(\bar{X}=\ldots\) " or similar unless \(\bar{X}\) is clearly and explicitly stated to be a population mean. \\
For adequate verbal definition. Allow absence of "population" if correct notation \(\mu\) is used. \\
\(s_{\mathrm{n}}=0.006746\) but do NOT allow this here or in construction of test statistic, but FT from there. \\
Allow c's \(\bar{X}\) and/or \(s_{n-1}\). \\
Allow alternative: \(1.040+(c\) 's 1.860) \(\times\) \(\frac{0.007155}{\sqrt{9}}(=1.0444)\) for subsequent comparison with \(\bar{x}\). \\
(Or \(\bar{x}-(c\) 's 860\() \times \frac{0.007155}{\sqrt{9}}\) \\
(= 1.0407) for comparison with 1.040.) \\
c.a.o. but ft from here in any case if wrong. \\
Use of \(1.040-\bar{x}\) scores M1A0, but ft . \\
No ft from here if wrong. \(\mathrm{P}(t>2.1896)=0.05996\). \\
No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.
\end{tabular} \& [9] \\
\hline (iii) \& \begin{tabular}{l}
CI is given by
\[
\begin{array}{r}
1.0452 \pm \\
=1.0452 \pm 0.0055=(1.039(7), 1.050(7))
\end{array}
\] \\
In repeated sampling, 95\% of confidence intervals constructed in this way will contain the true population mean.
\end{tabular} \& M1
B1
M1
A1

E2 \& c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{8} is OK. E2, 1, 0. \& [6]

\hline \& \& \& Total \& [18]

\hline
\end{tabular}

Q4	$\mathrm{f}(x)=\lambda \mathrm{e}^{-\lambda x}$ for $x \geq 0$, where $\lambda>0$.		Given $\int_{0}^{\infty} x^{r} \mathrm{e}^{-\lambda x} \mathrm{~d} x=\frac{r!}{\lambda^{r+1}}$	
(i)	$\begin{aligned} \int_{0}^{\infty} \mathrm{f}(x) \mathrm{d} x & =\int_{0}^{\infty} \lambda \mathrm{e}^{-\lambda x} \mathrm{~d} x \\ & =\left[-\mathrm{e}^{-\lambda x}\right]_{0}^{\infty} \\ & =\left(0-\left(-\mathrm{e}^{0}\right)\right)=1 \end{aligned}$	M1 M1 A1 G1 G1	Integration of $\mathrm{f}(x)$. Use of limits or the given result. Convincingly obtained (Answer given.) Curve, with negative gradient, in the first quadrant only. Must intersect the y-axis. ($0, \lambda$) labelled; asymptotic to x -axis.	[5]
(ii)	$\begin{aligned} \mathrm{E}(X)= & \int_{0}^{\infty} \lambda x \mathrm{e}^{-\lambda x} \mathrm{~d} x \\ & =\lambda \frac{1}{\lambda^{2}}=\frac{1}{\lambda} \\ \mathrm{E}\left(X^{2}\right)= & \int_{0}^{\infty} \lambda x^{2} \mathrm{e}^{-\lambda x} \mathrm{~d} x \\ & =\lambda \frac{2}{\lambda^{3}}=\frac{2}{\lambda^{2}} \\ \operatorname{Var}(X)= & \mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}=\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}} \end{aligned}$	M1 A1 M1 A1 M A1	Correct integral. c.a.o. (using given result) Correct integral. c.a.o. (using given result) Use of $\mathrm{E}\left(X^{2}\right)-\mathrm{E}(X)^{2}$	[6]
(iii)	$\begin{aligned} & \mu=6 \quad \therefore \lambda=\frac{1}{6} \\ & \bar{X} \sim(\text { approx }) N\left(6, \frac{6^{2}}{50}\right) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Obtained λ from the mean. Normal. Mean. ft c's λ. Variance. ft c's λ.	[4]
(iv)	```EITHER can argue that 7.8 is more than 2 SDs from \(\mu\). \((6+2 \sqrt{0.72}=7.697 ;\) must refer to \(\mathrm{SD}(\overline{\mathrm{X}})\), not \(\mathrm{SD}(\mathrm{X})\)) i.e. outlier. \(\Rightarrow\) doubt. OR formal significance test: \(\frac{\frac{7.8}{}-6}{\sqrt{0.72}}=2.121\), refer to \(\mathrm{N}(0,1)\), sig at (eg) \(5 \%\) \(\Rightarrow\) doubt.```	M M1 A1 M1 M1 A1	A 95\% C.I would be (6.1369, 9.4631). Depends on first M, but could imply it. $\mathrm{P}(\|Z\|>2.121)=0.0339$	[3]
			Total	[18]

Q1	$E \sim N\left(406,12^{2}\right)$ When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.			
(i)	$\begin{aligned} \mathrm{P}(E<420) & =\mathrm{P}\left(Z<\frac{420-406}{12}=1.1666\right) \\ & =0.8783 / 4 \end{aligned}$	M1 A1 A1	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	$\begin{aligned} & C \sim \mathrm{~N}(406 \times 14.6=5927.6, \\ & \left.\qquad \sigma^{2}=12^{2} \times 14.6^{2}=30695.04\right) \\ & \mathrm{P}(\text { this }>6000)= \\ & \mathrm{P}\left(Z>\frac{6000-5927.6}{175.2}=0.4132\right)=1-0 \cdot 6602=0.3398 \end{aligned}$	B1 B1 A1	Accept equivalent in $£$. Mean. Variance. Accept sd (= 175.2). Accept $\mathrm{P}(E>6000 / 14.6)$ o.e. c.a.o.	3
(iii)	$\begin{aligned} & B=C_{1}+C_{2}+C_{3} \sim \mathrm{~N}(17782.8, \\ & \left.\quad \sigma^{2}=175.2^{2}+175.2^{2}+175.2^{2}=92085.12\right) \\ & \text { Require } b \text { s.t. } \mathrm{P}(B<100 b)=0.99 \\ & \therefore \frac{100 b-17782.8}{303.455}=2.326 \\ & \therefore 100 b=17782.8+2.326 \times 303.455=18488.6 \ldots(\text { p) } \\ & \quad b=£ 184.89 \end{aligned}$	B1 B1 B1 A1	Accept equivalent in $£$, or $E_{1}+E_{2}+E_{3}$. Mean. ft from (ii). Variance. Accept sd (= 303.455...). ft from (ii). Accept $\mathrm{P}\left(E_{1}+E_{2}+E_{3}<100 b / 14.6\right)$ o.e. 2.326 seen. c.a.o. (Minimum 4 s.f. required in final answer.)	4
(iv)	$\begin{aligned} & \mathrm{H}_{0}: \mu=432 \\ & \mathrm{H}_{1}: \mu<432 \end{aligned}$ where μ is the mean amount of electricity used. $\bar{x}=422.16 \ldots \quad s_{n-1}=13.075(4)$ Test statistic is $\frac{422.16-432}{\frac{13.075}{\sqrt{6}}}$ $=-1.842(13) .$ Refer to t_{5}. Single-tailed 5\% point is -2.015 . Not significant. Insufficient evidence to suggest that the amount of electricity used has decreased on average.	B1	Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean. $s_{\mathrm{n}}=11.936$ but do NOT allow this here or in construction of test statistic, but FT from there. Allow c's \bar{X} and/or s_{n-1}. Allow alternative: $432+(c$'s -2.015$) \times$ $13.075 / \sqrt{6}(=421.24)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-\left(c^{\prime} s-2.015\right) \times 13.075 / \sqrt{6}$ (= 432.92) for comparison with 432.) c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{x}$ scores M1A0. No ft from here if wrong. $\mathrm{P}(t<-1.842(13))=0.0624$ Must be minus 2.015 unless absolute values are being compared. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Conclusion in context to include "on average" o.e.	9
				19

Q3				
(i)	Using mid- intervals 1.5, 1.7, etc $\begin{aligned} & \bar{x}=\frac{205}{100}=2.05 \\ & s=\sqrt{\frac{425.16-100 \times 2.05^{2}}{99}}=0.2227(01 \ldots) \end{aligned}$	M1 A1 E1	Mean. s.d. Answer given; must show convincingly.	3
(ii)	$\begin{aligned} f & =100 \times \mathrm{P}(1.8 \leq M<2.0) \\ & =100 \times \mathrm{P}(-1.1226 \leq z<-0.2245) \\ & =100 \times((1-0.5888)-(1-0.8691)) \\ & =100 \times(0.4112-0.1309)=28.03 \end{aligned}$	M1 A1 A1	Probability $\times 100$. Correct Normal probabilities. ft c's mean. Must show convincingly using Normal distribution. ft c's mean.	3
(iii)	H_{0} : The Normal model fits the data. H_{1} : The Normal model does not fit the data. $\begin{aligned} X^{2} & =0.7294+0.1384+1.9623+3.5155+0.2437 \\ & =6.589(3) \end{aligned}$ Refer to χ_{2}^{2}. Upper 5\% point is 5.991. Significant. Evidence suggests that the model does not fit the data.	B1 B1 M1 M1 A1 M1 A1 A1 A1	Ignore any reference to parameters. Merge first 2 and last 2 cells. Calculation of X^{2}. c.a.o. Allow correct df (= cells - 3) from wrongly grouped table and ft. Otherwise, no ft if wrong. $\mathrm{P}\left(X^{2}>6.589\right)=0.0371$ No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Conclusion in context.	9
(iv)	The model - overestimates in the $2.2-2.4$ class, - underestimates in the $2-2.2$ class. At lower significance levels the test would not have been significant.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { E1 } \end{aligned}$		3
				18

Q4				
(i)		$\begin{aligned} & \text { G1 } \\ & \text { G1 } \\ & \text { G1 } \end{aligned}$	One (straight) line segment correct. Second (straight) line segment correct. Fully labelled intercepts + no spurious other lines.	3
(ii)	$\begin{aligned} & \mathrm{E}(X)=0 \text { (By symmetry.) } \\ & \begin{aligned} \mathrm{E}\left(X^{2}\right) & =\int_{-1}^{0} x^{2}(1+x) \mathrm{d} x+\int_{0}^{1} x^{2}(1-x) \mathrm{d} x \\ & =\left[\frac{x^{3}}{3}+\frac{x^{4}}{4}\right]_{-1}^{0}+\left[\frac{x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{1} \\ & =0-\left(\frac{-1}{3}+\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)-0 \\ & =\frac{1}{6} \end{aligned} \\ & \therefore \operatorname{Var}(X)=\frac{1}{6}\left(-0^{2}\right)=\frac{1}{6} \end{aligned}$	B1 M1 M1 M1 A1	One correct integral with limits (which may be implied subsequently). Second integral correct (with limits) or allow use of symmetry. Correctly integrated and attempt to use limits. c.a.o. Condone absence of explicit evidence of use of $\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-$ $\mathrm{E}(X)^{2}$.	5
(iii)	$\bar{L} \sim N\left(k, \frac{1}{300}\right)$ Normal distribution because of the Central Limit Theorem.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \\ & \text { E1 } \end{aligned}$	Normal. Mean. Variance. ft c's variance in (ii) (>0) / 50 . Any reference to the CLT.	4
(iv)	$\begin{aligned} & \text { CI is given by } 90.06 \pm \\ & \qquad \begin{array}{l} 1.96 \\ \quad \times \frac{1}{\sqrt{300}} \\ \quad=90.06 \pm 0.11316=(89.947,90.173) \end{array} \end{aligned}$	M1 B1 M1 A1	ft c's variance in (ii) (>0) / 50 . Must be expressed as an interval.	4
(v)	It is reasonable, because 90 lies within the interval found in (iv).	E1	Or equivalent.	1
				17

GCE

Mathematics (MEI)

Mark Scheme for June 2011

Q1				
(i)	t test might be used because - population variance is unknown - background population is Normal	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \end{aligned}$	Allow "sample is small" as an alternative.	2
(ii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=15.3 \\ & \mathrm{H}_{1}: \mu<15.3 \end{aligned}$ where μ is the mean of Gerry's times. $\bar{x}=14.987 \quad s_{n-1}=0.4567(5)$ Test statistic is $\frac{14.987-15.3}{\frac{0.45675}{\sqrt{ } 10}}$ $=-2.167(0)$ Refer to t_{9}. Single-tailed 5\% point is -1.833 . Significant. Seems that Gerry's times have been reduced on average.	B1 B1 B1 M1 A1 M1 A1 A1 A1	Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used. $s_{\mathrm{n}}=0.4333$ but do NOT allow this here or in construction of test statistic, but FT from there. Allow c's \bar{x} and/or s_{n-1}. Allow alternative: 15.3 + (c's -1.833) $\times \frac{0.45675}{\sqrt{10}}(=15.035) \text { for subsequent }$ comparison with \bar{x}. $\text { (Or } \bar{x}-\left(c^{\prime} s-1.833\right) \times \frac{0.45675}{\sqrt{10}}$ (= 15.252) for comparison with 15.3.) c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{x}$ scores M1A0, but ft . No ft from here if wrong. Must be minus 1.833 unless absolute values are being compared. No ft from here if wrong. $\mathrm{P}(t<-2.167(0))=0.0292$ ft only c's test statistic. ft only c's test statistic. Conclusion in context to include "average" o.e.	9
(iii)	A 5\% significance level means that the probability of rejecting H_{0} given that it is true is 0.05 . Decreasing the significance level would make it less likely that a true H_{0} would be rejected. Evidence for rejecting H_{0} would need to be stronger.	E1 E1 E1	Or equivalent. Allow answers that relate to the context of the question.	3
(iv)	CI is given by $14.987 \pm$ $\begin{gathered} 2 \cdot 262 \\ \times \frac{0.45675}{\sqrt{10}} \\ =14.987 \pm 0.3267=(14.66(0), 15.31(3))) \end{gathered}$	M1 B1 M1 A1	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{9} is OK. c.a.o. Must be expressed as an interval.	4
				18

| Q3 | | | |
| :--- | :--- | :--- | :--- | :--- |
| (i) | | | |
| (A) | | | |

Q4	$C \sim \mathrm{~N}\left(10,0.4^{2}\right), \quad D \sim \mathrm{~N}\left(35,3.5^{2}\right)$ When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.			
(i)	$\begin{aligned} \mathrm{P}(C<9.5) & =\mathrm{P}\left(Z<\frac{9.5-10}{0.4}=-1.25\right) \\ & =1-0.8944=0.1056 \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	$\begin{aligned} & D-S=D-\left(C_{1}+C_{2}+C_{3}+C_{4}\right) \sim \mathrm{N}(-5, \\ & \left.\quad \sigma^{2}=3.5^{2}+\left(0.4^{2}+0.4^{2}+0.4^{2}+0.4^{2}\right)=12.89\right) \end{aligned}$ Want $\mathrm{P}(D>S)=\mathrm{P}(D-S>0)$ $\begin{aligned} & =1-\Phi\left(\frac{0-(-5)}{3.59}=1.39(27)\right) \\ & =1-0.9182=0.0818 \end{aligned}$	B1 B1 M1 A1	Mean. Accept +5 for $S-D$. Variance. Accept sd (= 3.590...). Formulation of requirement. Accept S - D <0. This mark could be awarded in (iii) if not earned here. c.a.o.	4
(iii)	$\begin{array}{r} \text { New }(D-S)=(D \times 1.3)-\left(C_{1}+\ldots+C_{5}\right) \sim \mathrm{N}(-4.5, \\ \left.\sigma^{2}=\left(3.5^{2} \times 1.3^{2}\right)+\left(0.4^{2}+\ldots+0.4^{2}\right)=21.5025\right) \end{array}$ Again want $\mathrm{P}(D>S)=\mathrm{P}(D-S>0)$ $\begin{aligned} & =1-\Phi\left(\frac{0-(-4.5)}{4.637}=0.9704\right) \\ & =1-0.8341=0.1659 \end{aligned}$	B1 M1 A1 A1	Mean. Accept +4.5 for $S-D$. Correct use of $\times 1.3^{2}$ for variance. c.a.o. Accept sd (= 4.637...) Or S - D <0. M1 for formulation in (ii) available here. c.a.o.	4
(iv)	CI is given by $9.73 \pm$ $=9.73 \pm 0.2263=(9.50(37), 9.95(63))$ Since 10 lies above this interval, it seems that the cheeses are underweight. In repeated sampling, 95% of all confidence intervals constructed in this way will contain the true mean.	M1 B1 M1 A1 E1 E1 E1	1.96 seen. c.a.o. Must be expressed as an interval. Ft c's interval.	7
				18

Question		Answer	Marks	Guidance
1	(i)	A paired sample is used in this context in order to eliminate any effects due to the surfaces used.	E1 [1]	Must refer to (differences between) surfaces.
1	(ii)	A t test might be used since the sample is small and ... the population variance is not known (it must be estimated from the data). Must assume: Normality of population of differences.	$\begin{aligned} & \text { E1 } \\ & \text { E1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { [4] } \end{aligned}$	Allow use of " σ ", otherwise insist on "population". Allow "underlying" or "distribution" to imply "population".
1	(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{D}=0 \\ & \mathrm{H}_{1}: \mu_{D}>0 \end{aligned}$ Where μ_{D} is the (population) mean reduction/difference in drying time. MUST be PAIRED COMPARISON t test. Differences (reductions) (before - after) are: $\begin{array}{ccllllllll} 0.7 & 0.7 & 0.2 & -0.3 & 0.8 & -0.1 & 0.3 & -0.1 & 0.1 & 0.5 \\ \bar{x}=0.28 & s_{n-1} & =0.3852(84) & \left(s_{n-1}{ }^{2}=0.1484(44)\right) \end{array}$ Test statistic is $\frac{0.28-0}{\frac{0.3853}{\sqrt{ } 10}}$ $=2.298$ Refer to t_{9}. Single-tailed 5\% point is 1.833 . Significant. Seems mean drying time has fallen.	B1 B1 B1 M1 A1 M1 A1 A1 A1 [9]	Both. Accept alternatives e.g. $\mu_{D}<0$ for H_{1}, or $\mu_{B}-\mu_{A}$ etc provided adequately defined. Hypotheses in words only must include "population". Do NOT allow " $\bar{X}=\ldots$ " or similar. unless \bar{X} is clearly and explicitly stated to be a population mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used. Allow "after - before" if consistent with alternatives above. Do not allow $s_{\mathrm{n}}=0.3655\left(s_{n}{ }^{2}=0.1336\right)$ Allow c's \bar{x} and/or s_{n-1}. Allow alternative: $0+(\mathrm{c}$ s 1.833) \times $\frac{0.3853}{\sqrt{10}}(=0.2233)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-(c$'s 1.833$) \times \frac{0.3853}{\sqrt{10}}$ (= 0.0566) for comparison with 0 .) c.a.o. but ft from here in any case if wrong. Require $3 / 4 \mathrm{sf}$; condone up to 6. Use of $0-\bar{x}$ scores M1A0, but ft . No ft from here if wrong. $\mathrm{P}(t>2.298)=0.02357$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. "Non-assertive" conclusion in context to include "on average" oe.

Question			Answer	Marks	Guidance
1	(iv)		$\begin{aligned} & \text { CI is given by } 0.28 \pm \\ & \quad \times \frac{0.3853}{\sqrt{10}} \\ & \quad=0.28 \pm 0.2756=(0.0044,0.5556) \end{aligned}$	M1 B1 M1 A1 [4]	Allow c's \bar{x}. Allow c's s_{n-1}. c.a.o. Must be expressed as an interval. Require $3 / 4 \mathrm{dp}$; condone 5 . If the final answer is centred on a negative sample mean then do not award the final A mark. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1 B0 M1 A0. Recovery to t_{9} is OK.
2	(a)	(i)	For example, need to take a sample because the population might be too large for it to be sensible to take a complete census. Because the sampling process might be destructive.	E1 E1 [2]	Reward 1 mark each for any two distinct, sensible points.
2	(a)	(ii)	For example Sample should be unbiased. Sample should be representative (of the population).	E1 E1 [2]	Reward 1 mark each for any two distinct, sensible points that the sample/data should be fit for purpose. Further examples include: data should not be distorted by the act of sampling; data should be relevant.
2	(a)	(iii)	A random sample ... enables proper statistical inference to be undertaken because we know the probability basis on which it has been selected	E2 [2]	Award E2, 1, 0 depending on the quality of response.
2	(b)	(i)	A Wilcoxon signed rank test might be used when nothing is known about the distribution of the background population. Must assume symmetry (about the median).	E1 E1 [2]	Do not allow "sample", or "data" unless it clearly refers to the population. Do not allow if "Normality" forms part of the assumption.

Question		Answer	Marks	Guidance
3	(ii)	$\begin{aligned} & \text { Want } \mathrm{P}(R>S+10) \text { i.e. } \mathrm{P}(R-S>10) \\ & R-\mathrm{S} \sim \mathrm{~N}(24.23-11.07=13.16, \\ & \left.\quad 3.75^{2}+2.36^{2}=19.6321\right) \\ & \begin{aligned} \mathrm{P}(\text { this }>10) & =\mathrm{P}\left(Z>\frac{10-13.16}{\sqrt{19.6321}}=-0.7132\right) \\ & =0.7621 \end{aligned} \end{aligned}$	M1 B1 B1 A1 [4]	Allow $S-R$ provided subsequent work is consistent. Mean. Variance. Accept $s d=\sqrt{ } 19.6321=4.4308 \ldots$ cao
3	(iii)	$\begin{aligned} & \text { Want } \mathrm{P}(S+R>2 / 3 C) \text { i.e. } \mathrm{P}(S+R-2 / 3 C>0) \\ & S+R-2 / 3 C \sim \mathrm{~N}(11.07+24.23-2 / 3 \times 57.33=-2.92, \\ & \left.2.36^{2}+3.75^{2}+(2 / 3 \times 8.76)^{2}=53.7377\right) \\ & \begin{aligned} \mathrm{P}(\text { this }>0) & =\mathrm{P}\left(Z>\frac{0-(-2.92)}{\sqrt{53.7377}}=0.3983\right) \\ \quad & =1-0.6548=0.3452 \end{aligned} \end{aligned}$	M1 B1 B1 A1 [4]	Allow $2 / 3 L-(S+R)$ provided subsequent work is consistent. Mean Variance. Accept $s d=\sqrt{ } 53.7377=7.3306 \ldots$ cao
3	(iv)	$\begin{aligned} & \bar{x}=98.484, s_{n-1}=10.1594 \\ & \text { CI is given by } 98.484 \pm \\ & \qquad \quad 2.201 \\ & \quad \times \frac{10.1594}{\sqrt{12}} \\ & \\ & =98.484 \pm 6.455=(92.03,104.94) \end{aligned}$	B1 M1 B1 M1 A1 [5]	Do not allow $s_{n}=9.7269$. ft c 's $\bar{x} \pm$. From t_{11}. ft c's s_{n-1}. cao Must be expressed as an interval. Require 1 or 2 dp ; condone 3dp.
3	(v)	Normality is unlikely to be reasonable - times could well be (positively) skewed. Independence is unlikely to be reasonable - e.g. a competitor who is fast in one stage may well be fast in all three.	E1 E1 [2]	Discussion required. Accept any reasonable point. Accept "reasonable" provided an adequate explanation is given. Discussion required. Accept any reasonable point. This is independence between stages for a particular competitor, not between competitors.

Question		Answer	Marks	Guidance
1	(i)	A Normal test is not appropriate since the sample is small and ... the population variance is not known (it must be estimated from the data).	E1 E1 [2]	Allow use of " σ ", otherwise insist on "population".
1	(ii)	The sample is taken from a Normal population.	B1 [1]	
1	(iii)	$\begin{aligned} & \mathrm{H}_{0}: \mu=7.8 \\ & \mathrm{H}_{1}: \mu \neq 7.8 \end{aligned}$ where μ is the mean water pressure.	B1	Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\bar{X}=\ldots$ " or similar unless \bar{X} is clearly and explicitly stated to be a population mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used.
		$\bar{x}=7.631 \quad s=0.1547$ Test statistic is $\frac{7.631-7.8}{\frac{0.1547}{\sqrt{9}}}$	B1 M1	$s_{\mathrm{n}}=0.1459$ but do $\underline{\text { NOT }}$ allow this here or in construction of test statistic, but ft from there. Allow c's \bar{x} and/or s_{n-1}. Allow alternative: $7.8+(c$'s -2.896$) \times 0.1547 / \sqrt{9}(=7.65 \ldots)$ for subsequent comparison with \bar{x}. (Or $\bar{x}-(c$'s -2.896$) \times 0.1547 / \sqrt{9}(=7.78 \ldots)$ for comparison with 7.8.)
		$=-3.27(7)$	A1	c.a.o. but ft from here in any case if wrong. Use of $\mu-\bar{x}$ scores M1A0.
		Refer to t_{8}. Double-tailed 2\% point is ± 2.896.	M1 A1	No ft from here if wrong. Must compare test statistic with minus 2.896 unless absolute values are being compared. No ft from here if wrong. Allow $\mathrm{P}(t<-3.27(7)$ or $t>3.27(7))=0.0113$ for M1A1.
		Significant. Sufficient evidence to suggest that the mean water pressure has changed.	$\begin{aligned} & \text { A1 } \\ & \text { A1 } \end{aligned}$	ft only c's test statistic if both M's scored. ft only c's test statistic if both M's scored. Conclusion in context to include "average" o.e.
			[9]	

Question		Answer	Marks	Guidance
1	(iv)	In repeated sampling, 95\% of all confidence intervals constructed in this way will contain the true mean.	E1 E1 [2]	
1	(v)	CI is given by $7.631 \pm$ $\begin{aligned} & 2 \cdot 306 \\ & \times \frac{0.1547}{\sqrt{9}} \\ &=7.631 \pm 0.118(9)=(7.512,7.750) \end{aligned}$	M1 B1 M1 A1 [4]	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{8} is OK. Allow c's \bar{x}. 2.306 seen. Allow c's s_{n-1}. c.a.o. Must be expressed as an interval.
2	(i)		G1 G1 G1 [3]	Curve with positive gradient, through the origin and in the first quadrant only. Correct shape for an inverted parabola ending at maximum point. End point (2, 3/4) labelled.

Question		Answer	Marks	Guidance
2	(iv)	$\begin{aligned} \mathrm{P}(X & <1)=\frac{3}{16} \int_{0}^{1}\left(4 x-x^{2}\right) \mathrm{d} x \\ & =\frac{3}{16}\left[2 x^{2}-\frac{x^{3}}{3}\right]_{0}^{1} \\ & =\frac{3}{16}\left\{\left(2-\frac{1}{3}\right)-0\right\} \\ & =\frac{5}{16} \end{aligned}$	M1 A1 [2]	Correct integral for $\mathrm{P}(X<1)$ with limits (which may appear later). cao. Condone absence of " -0 " when limits applied.
2	(v)	Regard the reed beds as clusters. Select a few clusters (maybe only one) at random. Take a (simple random) sample of reeds (or maybe all of them) from the selected cluster(s).	E1 E1 E1 [3]	NB "Clusters of reeds" scores 0 unless clearly and correctly explained.
3		$\begin{aligned} P 1 & \sim \mathrm{~N}\left(2025,44.6^{2}\right) \\ P 2 & \sim \mathrm{~N}\left(1565,21.8^{2}\right) \\ I & \sim \mathrm{~N}\left(1410,33.8^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.
3	(i)	$\begin{aligned} & \mathrm{P}(P 1<2100)= \\ & \mathrm{P}\left(Z<\frac{2100-2025}{44.6}\right.=1.681(6)) \\ &=0.9536 / 7 \end{aligned}$	M1 A1 A1 [3]	For standardising. Award once, here or elsewhere. с.a.o.

Question		Answer	Marks	Guidance
3	(ii)	$\begin{aligned} & \text { Require } \mathrm{P}(P 1-P 2>400) \\ & P 1-P 2 \sim(2025-1565=460, \\ & \left.44.6^{2}+21.8^{2}=2464.4\right) \end{aligned} \quad \begin{aligned} & \mathrm{P}(\text { this }>400)= \\ & \mathrm{P}\left(Z>\frac{400-460}{\sqrt{2464.4}}=-1.208(6)\right)=0 \cdot 8864 / 5 \end{aligned}$	M1 B1 B1 A1 [4]	Mean. Variance. Accept sd (= 49.64). cao
3	(iii)	$\begin{aligned} & T=P 1+P 2+I \sim \mathrm{~N}(5000, \\ & \left.\quad \sigma^{2}=44.6^{2}+21.8^{2}+33.8^{2}=3606.84\right) \\ & \text { Require } b \text { s.t. } \mathrm{P}(T>b)=0.95 \\ & \therefore \frac{b-5000}{\sqrt{3606.84}}=-1.645 \\ & \therefore b=5000-1.645 \times \sqrt{3606.84}=4901.2 . \end{aligned}$	B1 B1 B1 A1 [4]	Mean. Variance. Accept sd (= 60.056...). -1.645 seen. c.a.o.
3	(iv)	$\begin{gathered} \text { Mean }=(1.2 \times 2025)+(1.3 \times 1565)+ \\ (0.8 \times 1410)=£ 5592.50 \\ \text { Var }=\left(1.2^{2} \times 44.6^{2}\right)+\left(1.3^{2} \times 21.8^{2}\right)+ \\ \left(0.8^{2} \times 33.8^{2}\right)=4398.7076 \approx £^{2} 4399 \end{gathered}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Condone absence of $£$. Use of at least one of $\left(1.2^{2} \times 44.6^{2}\right)$ etc... Condone absence of $£^{2}$.
3	(v)	$\begin{aligned} & \text { Mean }=(123.72+127.38) / 2=125.55 \\ & s=\frac{127.38-125.55}{2.576 / \sqrt{50}}=5.02(3) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Cao Sight of 2.576 . Or equivalent. cao

Question		Answer	Marks	Guidance
1	(ii)	Normal distribution can be used because the sample size is large enough for the Central Limit Theorem to apply.	B1 M1 B1 M1 A1 E1 [6]	Accept $s^{2}=0.1369$. Beware use of msd (0.13518875) or rmsd (0.3676(8)). Do not allow here or below. ft c 's $\bar{x} \pm$. 1.96 seen. ft c's s but not rmsd. c.a.o. Must be expressed as an interval. [rmsd gives $6.94 \pm 0.0805(7)=(6.8594(2), 7.0205(7))]$ CLT essential
1	(iii)	Advantage: A 99\% confidence interval is more likely to contain the true mean. Disadvantage: A 99\% confidence interval is less precise/wider.	E1 E1 [2]	O.e. O.e.
2	(i)	A paired test would eliminate any differences between individual cattle.	E1 [1]	
2	(ii)	Must assume: Normality of population of differences.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & {[2]} \\ & \hline \end{aligned}$	

	uesti	Answer	Marks	Guidance
2	(iv)	CI is given by $7.5 \pm$ $\begin{array}{r} 2.262 \\ \times \frac{3.5668}{\sqrt{ } 10} \\ =7.5 \pm 2.5514=(4.948,10.052) \end{array}$	M1 B1 M1 A1 [4]	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{9} is OK. Allow c's \bar{x}. 2.262 seen. Allow c's s_{n-1}. c.a.o. Must be expressed as an interval.
3	(i)		G1 G1 G1 [3]	Curve, through the origin and in the first quadrant only. A single maximum; curve returns to $y=0$; nothing to the right of $x=5$. No t.pt at $x=0$; t.pt. at $x=5 ;(5,0)$ labelled (p.i. by an indicated scale).
3	(ii)	$\begin{aligned} & \mathrm{F}(x)=k \int_{0}^{x} t(t-5)^{2} \mathrm{~d} t \\ & =k\left[\frac{t^{4}}{4}-\frac{10 t^{3}}{3}+\frac{25 t^{2}}{2}\right]_{0}^{x} \\ & =k\left(\frac{x^{4}}{4}-\frac{10 x^{3}}{3}+\frac{25 x^{2}}{2}\right) \end{aligned}$	M1 M1 A1 [3]	Correct integral for $\mathrm{F}(x)$ with limits (which may appear later). Correctly integrated. Limits used correctly to obtain expression. Condone absence of " -0 ". Do not require complete definition of $\mathrm{F}(x)$. Dependent on both M1's

Question		Answer	Marks	Guidance
3	(iii)	$\begin{aligned} & \mathrm{F}(5)=1 \\ & \therefore k\left(\frac{5^{4}}{4}-\frac{10 \times 5^{3}}{3}+\frac{25 \times 5^{2}}{2}\right)=1 \\ & \therefore k\left(\frac{1875-5000+3750}{12}\right)=1 \\ & \therefore k \times \frac{625}{12}=1 \\ & \therefore k=\frac{12}{625} \end{aligned}$	M1 A1 [2]	Substitute $x=5$ and equate to 1 . Expect to see evidence of at least this line of working (oe) for A1. Convincingly shown. Beware printed answer.
3	(iv)	For $0 \leq x<1$, Expected $\mathrm{f}=60 \times \mathrm{F}(1)$ $=60 \times \frac{12}{625}\left(\frac{1^{4}}{4}-\frac{10 \times 1^{3}}{3}+\frac{25 \times 1^{2}}{2}\right)=10.848$ For $1 \leq x<2$, Expected $\mathrm{f}=60-\Sigma$ (the rest) $=20.64$	M1 A1 B1 [3]	Use of $60 \times \mathrm{F}(x)$ with correct k. Allow also 31.488 - frequency for $1 \leq x<2$ provided that one found using $\mathrm{F}(x)$. Allow either frequency found by integration. FT 31.488 - previous answer. Or allow $60 \times(F(2)-F(1))$

Question		Answer	Marks	Guidance
3	(v)	H_{0} : The model is suitable / fits the data. H_{1} : The model is not suitable / does not fit the data. Merge last 2 cells: $\mathrm{Obs} \mathrm{f}=17$, $\operatorname{Exp} \mathrm{f}=10.752$ $\begin{aligned} X^{2} & =3.1525+1.5411+1.5460+3.6307 \\ & =9.870 \end{aligned}$ Refer to χ_{3}^{2}. Upper 2.5\% point is 9.348. Significant. Sufficient evidence to suggest that the model is not suitable in this context.	B1 M1 M1 A1 M1 A1 A1 A1 [8]	Both hypotheses. Must be the right way round. Do not accept "data fit model" oe. Calculation of X^{2}. c.a.o. Allow correct df (= cells -1) from wrongly grouped table and ft . Otherwise, no ft if wrong. No ft from here if wrong. $\mathrm{P}\left(X^{2}>9.870\right)=0.0197$. ft only c's test statistic. ft only c's test statistic. Conclusion in context. Do not accept "data do not fit model" oe.
4		$\begin{aligned} & C \sim \mathrm{~N}(96,21) \\ & M \sim \mathrm{~N}(57,14) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.
4	(i)	$\begin{aligned} & \mathrm{P}(90<C<100) \\ & =\mathrm{P}\left(\frac{90-96}{\sqrt{21}}<Z<\frac{100-96}{\sqrt{21}}\right) \\ & =P(-1.3093<Z<0.8729) \\ & =0.8086-(1-0.9047) \\ & =0.7133 \end{aligned}$	M1 A1 A1 A1 [4]	For standardising. Award once, here or elsewhere. SC - candidates with consistent variances of 21^{2} and 14^{2} can be awarded all M and B marks Either side correct. $\text { SC - 0.2857, } 0.1905$ Both table values correct. Or $0.8086-0.0953$ c.a.o.
4	(ii)	Total weight $T \sim \mathrm{~N}(153,35)$ $\begin{aligned} & \mathrm{P}(T<145)=\mathrm{P}\left(Z<\frac{145-153}{\sqrt{35}}=-1.3522\right) \\ & =1-0.9118=0.0882 \end{aligned}$	B1 B1 A1 [3]	Mean. Variance. Accept sd $=5.916 \ldots$ $\text { SC } 637 \text { sd = } 25.239$ c.a.o.

	uestio	Answer	Marks	Guidance
4	(iii)	$T_{1}+T_{2}+T_{3}+T_{4} \sim \mathrm{~N}(612,140)$ Require w such that $\mathrm{P}($ this $>w)=0.95$ $\begin{aligned} & \therefore w=612-1.645 \times \sqrt{140} \\ & =592.5(3) \end{aligned}$	B1 B1 M1 B1 A1 [5]	Mean. Variance. Accept sd=11.832... $\mathrm{SC}=2548 \mathrm{sd}=50.478$ 1.645 seen. c.a.o.
4	(iv)	$\begin{aligned} & \text { Require } M \geq 0.35(M+C) \\ & \therefore 0.65 M \geq 0.35 C \\ & \therefore 0.65 M-0.35 C \geq 0 \\ & 0.65 M-0.35 C \sim \\ & \mathrm{~N}((0.65 \times 57)-(0.35 \times 96)=3.45, \\ & \left.\quad\left(0.65^{2} \times 14\right)+\left(0.35^{2} \times 21\right)=8.4875\right) \\ & \mathrm{P}(\text { This } \geq 0)=\mathrm{P}\left(Z \geq \frac{0-3.45}{\sqrt{8.4875}}=-1.1842\right) \\ & =0.8818 \end{aligned}$	M1 A1 B1 M1 A1 A1 [6]	Formulate requirement. Convincingly shown. Beware printed answer. Mean. For use of at least one of $0.65^{2} \times \ldots$ or $0.35^{2} \times \ldots$ Variance. Accept $\mathrm{sd}=2.913 \ldots \quad$ SC variance $=136.83 \mathrm{sd}=11.70$ c.a.o.

