Q1	$F(t) = 1 - e^{-t/3}$ (t>0)			
(i)	For median <i>m</i> , $\frac{1}{2} = 1 - e^{-m/3}$ $\therefore e^{-m/3} = \frac{1}{2} \Rightarrow -\frac{m}{3} = \ln \frac{1}{2} = -0.6931$	M1 M1	attempt to solve, here or for 90th percentile. Depends on previous	
	$\Rightarrow m = 2.079$	A1	M mark.	
	For 90 th percentile <i>p</i> , $0.9 = 1 - e^{-p/3}$	M1		
	$\therefore e^{-p/3} = 0.1 \Rightarrow -\frac{p}{3} = \ln 0.1 = -2.3026$ $\Rightarrow p = 6.908$	A1		5
	-	AI		5
(ii)	$f(t) = \frac{d}{dt} F(t)$	M1		
	$=\frac{1}{3}e^{-t/3}$	A1	(for <i>t</i> >0, but condone absence of this)	
	$\mu = \int_0^\infty \frac{1}{3} t \mathrm{e}^{-t/3} \mathrm{d}t$	M1	Quoting standard result gets 0/3 for the mean.	
	$=\frac{1}{3}\left\{\left[\frac{te^{-t/3}}{-1/3}\right]_{0}^{\infty}+3\int_{0}^{\infty}e^{-t/3}dt\right\}$	M1	attempt to integrate by parts	
	$= \left[0 - 0\right] + \left[\frac{e^{-t/3}}{-1/3}\right]_{0}^{\infty} = 3$	A1		5
(iii	$P(T > \mu) = [from cdf] e^{-\mu/3} = e^{-1}$	M1	[or via pdf]	
)	=0.3679	A1	ft c's mean (>0)	2
(iv)	$\overline{T} \sim (\text{approx}) \mathrm{N}\left(3, \frac{9}{30} = 0.3\right)$	B1 B1 B1	N ft c's mean (>0) 0.3	3
(v)	EITHER can argue that 4.2 is more than 2 SDs from μ $(3+2\sqrt{0.3} = 4.095;$ <u>must</u> refer to SD (\overline{T}), not SD(T)) i.e. outlier	M1 M1		
	$\frac{\Rightarrow \text{ doubt}}{OR} \qquad \qquad \text{formal}$	A1 M1		3
	significance test: $\frac{4.2-3}{3/\sqrt{30}} = 2.191$, refer to N(0,1), sig at (eg) 5%	M1	Depends on first M, but could imply it.	
	\Rightarrow doubt	A1		18

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q2	$X \sim N(180, \sigma = 12)$		suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the	
Interform <td>(i)</td> <td>$P(X < 170) = P(Z < \frac{170 - 180}{2} = -0.8333)$</td> <td>Μ</td> <td></td> <td></td>	(i)	$P(X < 170) = P(Z < \frac{170 - 180}{2} = -0.8333)$	Μ		
$ \begin{array}{ c c c c c c c c } \hline = 1-0.7976 = 0.2024 & A1 & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & &$		12	Λ1	here or elsewhere.	
$ \begin{array}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		-1.0.7076 - 0.2024			2
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		= 1 - 0.7976 = 0.2024	AI		5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(ii)	$X + X + X + X + X - N(900 \sigma^2 = 720[\sigma = 26.8328]$	B1	Mean	
$ \begin{array}{ c c c c c c c c } P(\text{this} < 840) = P(Z < \frac{840 - 900}{26.8328} = -2.236) \\ = 1 - 0.9873 = 0.0127 \end{array} & \text{A1} & \text{c.a.o.} & 3 \\ \hline \\$	(11)	$X_1 + X_2 + X_3 + X_4 + X_5 = 1(500, 0) = 720[0] = 20.0520]$			
$\begin{array}{ c c c c c c } \hline =& 1-0.9873 = 0.0127 & A1 & c.a.o. & 3 \\ \hline & & \\ $		840 - 900		L	
Image: Normal and the formula in t		$P(\text{this} < 840) = P(Z < \frac{-1}{26.8328} = -2.236)$			
$\begin{array}{c} (i) \\) \\ x + Y \sim N(230, \sigma^2 = 180[\sigma = 13.4164]) \\ P(this > 240) = P(Z > \frac{240 - 230}{13.4164} = 0.7454) \\ = 1 - 0.7720 = 0.2280 \end{array} \qquad $		= 1 - 0.9873 = 0.0127	A1	c.a.o.	3
$\begin{array}{c} (i) \\) \\ x + Y \sim N(230, \sigma^2 = 180[\sigma = 13.4164]) \\ P(this > 240) = P(Z > \frac{240 - 230}{13.4164} = 0.7454) \\ = 1 - 0.7720 = 0.2280 \end{array} \qquad $					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	(iii	$Y \sim N(50, \sigma = 6)$			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$)		D 1		
$\begin{array}{ c c c c c } P(\text{this} > 240) = P(Z > \frac{240 - 230}{13.4164} = 0.7454) \\ = 1 - 0.7720 = 0.2280 \end{array} \qquad $		$X + Y \sim N(230, \sigma^2 = 180[\sigma = 13.4164])$			
$\begin{array}{ c c c c c } \hline =&1-0.7720 = 0.2280 & A1 & c.a.o. & 3 \\ \hline & & & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline$		240 - 230	BI	variance. Accept so.	
(iv) $\frac{1}{4}X \sim N\left(45, \sigma^2 = \frac{1}{16} \times 144 = 9[\sigma = 3]\right)$ Require t such that $0.9 = P(\text{this } < t) = P\left(Z < \frac{t-45}{3}\right) = P(Z < 1.282)$ B1 Formulation of requirement. 1.282 (v) $I = 45 + T$ where $T \sim N(120, \sigma = 10)$ $\therefore I \sim N(165, \sigma = 10)$ B1 For unchanged σ (candidates might work with P (T<105))		$P(\text{this} > 240) = P(Z > \frac{240}{13.4164} = 0.7454)$			
$\frac{1}{4} A \approx N(43.6^{\circ} = \frac{1}{16} \times 1144 \approx 9[6^{\circ} = 5])$ Require t such that $0.9 = P(\text{this} < t) = P\left(Z < \frac{t-45}{3}\right) = P(Z < 1.282)$ $\therefore t-45 = 3 \times 1.282 \Rightarrow t = 48.85 (48.846)$ (v) $I = 45 + T \text{ where } T \sim N (120, \sigma = 10)$ $\therefore I \sim N(165, \sigma = 10)$ $P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5)$ = 1 - 0.9332 = 0.0668 P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5) = 1 - 0.9332 = 0.0668 P(I < 10) Cands might work with P(T < 105)) P(I < 150) = 0.0668 P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5) = 1 - 0.9332 = 0.0668 P(I < 150) = 0.068 P(I < 150) = 0.068		=1-0.7720=0.2280	A1	c.a.o.	3
$\frac{1}{4} A \approx N(43.6^{\circ} = \frac{1}{16} \times 1144 \approx 9[6^{\circ} = 5])$ Require t such that $0.9 = P(\text{this} < t) = P\left(Z < \frac{t-45}{3}\right) = P(Z < 1.282)$ $\therefore t-45 = 3 \times 1.282 \Rightarrow t = 48.85 (48.846)$ (v) $I = 45 + T \text{ where } T \sim N (120, \sigma = 10)$ $\therefore I \sim N(165, \sigma = 10)$ $P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5)$ = 1 - 0.9332 = 0.0668 P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5) = 1 - 0.9332 = 0.0668 P(I < 10) Cands might work with P(T < 105)) P(I < 150) = 0.0668 P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5) = 1 - 0.9332 = 0.0668 P(I < 150) = 0.068 P(I < 150) = 0.068	(iv)	1 (. 1)	B 1	Variance Accept sd	
Require t such that $0.9 = P(\text{this } < t) = P\left(Z < \frac{t-45}{3}\right) = P(Z < 1.282)$ MFormulation of requirement. 1.282 $\therefore t-45 = 3 \times 1.282 \Rightarrow t = 48.85 (48.846)$ B1 A1ft only for incorrect mean4(v) $I = 45 + T$ where $T \sim N (120, \sigma = 10)$ $\therefore I \sim N(165, \sigma = 10)$ B1 $1 \sim N(165, \sigma = 10)$ for unchanged σ (candidates might work with P (T<105))	(11)	$\frac{1}{4}X \sim N[45, \sigma^2 = \frac{1}{16} \times 144 = 9[\sigma = 3]]$	DI	—	
$\begin{array}{ c c c c c c } \hline 0.9 = P(\text{this} < t) = P\left(Z < \frac{t-45}{3}\right) = P(Z < 1.282) \\ \therefore t-45 = 3 \times 1.282 \Rightarrow t = 48.85 (48.846) & \text{A1} \\ \hline \text{A1} & \text{It only for incorrect mean} & \text{A} \\ \hline \text{(v)} & I = 45 + T \text{ where } T \sim \text{N} (120, \ \sigma = 10) \\ \therefore I \sim \text{N}(165, \ \sigma = 10) & \text{B1} \\ P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5) \\ = 1 - 0.9332 = 0.0668 & \text{A1} & \text{c.a.o.} & \text{2} \\ \hline \text{(vi)} & J = 30 + \frac{3}{5}T \text{ where } T \sim \text{N} (120, \ \sigma = 10) & \text{Cands might work with} \\ P\left(\frac{3}{5}T < 75\right). & \text{Cands might work with} \\ \hline \text{Conds might work with} \\ P\left(\frac{3}{5}T < 75\right). & \text{Conds might work with} \\ \hline \text{Conds might work with} \\ \hline$		Require t such that	М		
(v) $I = 45 + T$ where $T \sim N (120, \sigma = 10)$ B1 ft only for incorrect mean 4 (v) $I = 45 + T$ where $T \sim N (120, \sigma = 10)$ B1 for unchanged σ (candidates might work with P ($T < 105$)) 9 $P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5)$ $= 1 - 0.9332 = 0.0668$ A1 c.a.o. 2 (vi) $J = 30 + \frac{3}{5}T$ where $T \sim N (120, \sigma = 10)$ Cands might work with $P(\frac{3}{5}T < 75)$. 2					
$\therefore t - 45 = 3 \times 1.282 \Rightarrow t = 48.85 (48.846)$ A1 ft only for incorrect mean 4 (v) $I = 45 + T$ where $T \sim N (120, \sigma = 10)$ B1 for unchanged σ (candidates might work with P ($T < 105$)) 81 $P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5)$ $= 1 - 0.9332 = 0.0668$ A1 c.a.o. 2 (vi) $J = 30 + \frac{3}{5}T$ where $T \sim N (120, \sigma = 10)$ Cands might work with $P(\frac{3}{5}T < 75)$. 2			B 1	1.202	
(v) $I = 45 + T$ where $T \sim N (120, \sigma = 10)$ B1 for unchanged σ (candidates might work with P (T<105))		$\therefore t - 45 = 3 \times 1.282 \implies t = 48.85 (48.846)$		ft only for incorrect mean	4
$\begin{array}{c c} \therefore I \sim N(165, \sigma = 10) \\ P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5) \\ = 1 - 0.9332 = 0.0668 \end{array} \qquad $					
$\begin{array}{c c} \therefore I \sim N(165, \sigma = 10) \\ P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5) \\ = 1 - 0.9332 = 0.0668 \end{array} \qquad $	(v)	$I = 45 + T$ where $T \sim N$ (120, $\sigma = 10$)			1
$P(I < 150) = P(Z < \frac{150 - 165}{10} = -1.5)$ $= 1 - 0.9332 = 0.0668$ A1 $A1$ $C.a.o.$ $Cands might work with P(T < 105))$ $J = 30 + \frac{3}{5}T$ where $T \sim N(120, \sigma = 10)$ $Cands might work with P(\frac{3}{5}T < 75).$			B1	for unchanged σ (candidates	
$\begin{array}{c c} = 1 - 0.9332 = 0.0668 \\ \hline & A1 \\ c.a.o. \\ \hline & 2 \\ \hline & \\ \hline \\ \hline$				C	
$\begin{array}{c c} = 1 - 0.9332 = 0.0668 \\ \hline & A1 \\ c.a.o. \\ \hline & 2 \\ \hline & \\ \hline \\ \hline$		$P(I < 150) = P(Z < \frac{150 - 165}{2} = -1.5)$			
(vi) $J = 30 + \frac{3}{5}T$ where $T \sim N$ (120, $\sigma = 10$) Cands might work with $P(\frac{3}{5}T < 75)$.					
$P(\frac{3}{5}T < 75).$		=1-0.9332=0.0668	Al	c.a.o.	2
$P(\frac{3}{5}T < 75).$					
$P(\frac{3}{5}T < 75).$					
	(vi)	$J = 30 + \frac{3}{2}T$ where $T \sim N (120 \sigma = 10)$			
$\frac{3}{5}T \sim N(72,36)$		5		$P\left(\frac{3}{5}T<75\right).$	
				$\frac{3}{5}T \sim N(72,36)$	

$\therefore J \sim \mathrm{N}\left(102, \sigma^2 = \frac{9}{25} \times 100 = 36[\sigma = 6]\right)$	B1 B1	Mean. Variance. Accept sd.	
$P(J < 105) = P(Z < \frac{105 - 102}{6} = 0.5) = 0.6915$	A1	c.a.o.	3
			18

Q3				
(a)	$H_0: \mu_D = 0$ (or $\mu_A = \mu_B$)	B1	Hypotheses in words only must include "population".	
	$H_1: \mu_D > 0$ (or $\mu_B > \mu_A$)	B1	Or "<" for <i>A</i> − <i>B</i> .	
	where μ_D is "mean for B – mean for A"	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X}_A = \overline{X}_B$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	
	Normality of <u>differences</u> is required <u>MUST</u> be PAIRED COMPARISON t test.	B1		
	Differences are:			
	2.1 1.0 0.8 0.6 0.4 -1.0 -0.3	0.8	0.9 1.1	
	$\overline{d} = 0.64$ $s_{n-1} = 0.8316$	B1	$s_n = 0.7889$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{0.64 - 0}{\frac{0.8316}{\sqrt{10}}}$	М	Allow c's \overline{d} and/or s_{n-1} . Allow alternative: 0 + (c's 1.833) $\times \frac{0.8316}{\sqrt{10}}$ (= 0.4821) for	
			subsequent comparison with \overline{d} . (Or \overline{d} – (c's 1.833) × $\frac{0.8316}{\sqrt{10}}$ (= 0.1579) for comparison with 0.)	
	=2.43(37).	A1	c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{d}$ scores M1A0, but ft.	
	Refer to t_9 .	М	No ft from here if wrong.	
	Single-tailed 5% point is 1.833.	A1	No ft from here if wrong.	
	Significant.	E1	ft only c's test statistic.	
	Seems mean amount delivered by B is	E1	ft only c's test statistic.	11
	greater that that by A		Special case: (t_{10} and 1.812) can score 1 of these last 2 marks if either form of conclusion is given.	
(b)	We now require Normality for the amounts delivered by machine A.	B1		

For machine A, $\bar{x} = 250.19$ $s_{n-1} = 3.8527$ CI is given by $250.19 \pm 2.262 \frac{3.8527}{\sqrt{10}}$	B1 M B1 M	$s_n = 3.6549(83)$ but do NOT allow this here or in construction of CI. ft c's $\overline{x} \pm$. 2.262 ft c's s_{n1} .	
= 250.19 ± 2.75(6) = (247.43(4), 252.94(6)) 250 is in the CI, so would accept H ₀ : μ =	A1 E1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_9 is OK.	7
250, so no evidence that machine is not working correctly in this respect.			
			18

Q4 (i)									
(1)		$\underbrace{1 \qquad 30}_{31}$	62	70	3	34 3	3		
	e _i	1.49 37.85 39.34	55.6 2	58.3 2	Ζ	14.62 46	72		
						М	for grouping		
	$X^2 = 1.7681 + 0.7318 + 2.3392 + 2.0222$ $= 6.86$			2	M A1	Allow the M1 for corn from wrongly grouped ungrouped table.			
	Refer	to χ_1^2 .				М	Allow correct df (= ce from wrongly grouped ungrouped table, and Otherwise, no FT if w	d or FT.	
	Uppe	r 5% point is 3.84				A1	No ft from here if wro		
		ficant				E1	ft only c's test statistic		-
	Sugge	ests Normal model	does no	ot fit		E1	ft only c's test statistic	с.	7
(ii) (A)	t test	unwise				E1			
(A)		cause underlying p Normal	opulatio	on appea	rs	E1	FT from result of cane work in (i)	didate's	2

Data	Median 301	Difference	Rank of diff			
301.3		0.3	3	Μ	for differences.	
301.4		0.4	4		ZERO in this section if	
299.6		- 1.4	8		differences not used.	
302.2		1.2	7			
300.3		- 0.7	5		for ranks.	
303.2		2.2	10	Μ	FT if ranks wrong.	
302.6		1.6	9	A 1		
301.8		0.8	6	A1		
300.9		- 0.1	1			
300.8		- 0.2	2			
	+5+8=10	6 (or 3+4+6+	7+9+10 =	B1		
39)	ables of Wi	6 (or 3+4+6+ ilcoxon single		B1 M		
39) Refer to ta (/paired) s	ables of Wi statistic		e sample	21		
39) Refer to ta (/paired) s Lower (or needed	ables of Wi statistic upper if 3	ilcoxon single	e sample il is	M		
39) Refer to ta (/paired) s Lower (or needed Value for	ables of Wi statistic upper if 3	ilcoxon single 9 used) 5% ta 0 (or 45 if 39	e sample il is	M M		
39) Refer to ta (/paired) s Lower (or needed Value for Result is r	ables of Wi statistic upper if 3 n = 10 is 1 not signific	ilcoxon single 9 used) 5% ta 0 (or 45 if 39	e sample il is used)	M M A1		

Q1	$f(x) = 12x^3 - 24x^2 + 12x, \qquad 0 \le x \le 1$			
(i)	$E(X) = \int_{0}^{1} xf(x)dx$	M1	Integral for $E(X)$ including limits	
	$=12\left[\frac{x^{5}}{5}-2\frac{x^{4}}{4}+\frac{x^{3}}{3}\right]_{0}^{1}$	A1	(which may appear later). Successfully integrated.	
	$= 12\left[\frac{1}{5} - \frac{2}{4} + \frac{1}{3}\right] = 12 \times \frac{1}{30} = \frac{2}{5}$	A1	Correct use of limits leading to final answer. C.a.o.	
	For mode, $f'(x) = 0$	M1		
	f'(x) = 12(3x ² - 4x + 1) = 12(3x - 1)(x - 1) ∴ f'(x) = 0 for x = 1 and x = $\frac{1}{3}$	A1		
	Any convincing argument (e.g. $f''(x)$) that $\frac{1}{3}$ (and not 1) is the mode.	A1		6
(ii)	Cdf F(x) = $\int_{0}^{x} f(t) dt$ = $12 \left(\frac{x^4}{4} - 2 \frac{x^3}{3} + \frac{x^2}{2} \right)$ = $3x^4 - 8x^3 + 6x^2$	M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$F\left(\frac{1}{4}\right) = \frac{3}{256} - \frac{8}{64} + \frac{6}{16} = \frac{3 - 32 + 96}{256} = \frac{67}{256}$	A1	Or equivalent expression; condone absence of domain [0,1].	
	$F\left(\frac{3}{4}\right) = \frac{3\times81}{256} - \frac{8\times27}{64} + \frac{6\times9}{16} = \frac{243}{256}$ $F\left(\frac{3}{4}\right) = \frac{3\times81}{256} - \frac{8\times27}{64} + \frac{6\times9}{16} = \frac{243}{256}$	B1	For all three; answers given; must show convincing working (such as common denominator)! Use of decimals is not acceptable.	3
(iii)	o _i 12 209 131 46			
	$\begin{array}{ c c c c c c c }\hline 6 & & & & & \\ \hline e_i & 13 & 352 - 134 & 486 - 352 = & 26 \\ \hline 4 & = 218 & 134 & \\ \hline \end{array}$	B2	For e_i . B1 if any 2 correct, provided $\Sigma = 512$.	
	$X^{2} = 0.4776 + 0.3716 + 0.0672 + 15.3846 =$ 16.30(1) Refer to χ_{3}^{2} . Very highly significant. Very strong evidence that the model does not fit. The main feature is that we change many	M1 A1 M1	Must be some clear evidence of reference to χ_3^2 , probably implicit by reference to a critical point (5% : 7.815; 1% : 11.34). No ft (to the A marks) if incorrect χ^2 used, but E marks are still available. There must be at least one reference to "very", i.e. the extremeness of the test statistic.	
	The main feature is that we observe many		Or e.g. "big/small" contributions	

4768	Mark Scheme		June 2006	
	more loads at the "top end" than expected. The other observations are below expectation, but discrepancies are comparatively small.	E1 E1	to X ² gets E1, and directions of discrepancies gets E1.	9
				18

		1		1
	A to B : $X \sim N(26, \sigma = 3)$ B to C : $Y \sim N(15, \sigma = 2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(X < 24) = P\left(Z < \frac{24 - 26}{3} = -0.6667\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 1 - 0.7476 = 0.2524	A1	c.a.o.	3
(ii)	$X + Y \sim N(41,$	B1	Mean.	
	$\sigma^2 = 9 + 4 = 13 [\sigma = 3.6056])$ P(this < 42) =	B1	Variance. Accept sd.	
	$P\left(Z < \frac{42 - 41}{3 \cdot 6056} = 0 \cdot 2774\right) = 0 \cdot 6093$	A1	c.a.o.	3
(iii)	$0.85X \sim N(22.1,$	B1	Mean.	_
	$\sigma^2 = (0.85)^2 \times 9 = 6.5025 [\sigma = 2.55])$	B1	Variance. Accept sd.	
	P(this < 24) = P($Z < \frac{24 - 22 \cdot 1}{2 \cdot 55} = 0.7451$)			
	= 0.7719	A1	c.a.o.	3
(iv)	$0.9X + 0.8Y \sim N(23.4 + 12 = 35.4,$	B1	Mean.	-
	$\sigma^2 = (0.9)^2 \times 9 + (0.8)^2 \times 4 = 9.85 \left[\sigma = 3.1385\right]$	B1	Variance. Accept sd.	
	Require t such that $0.75 = P(\text{this} < t)$ $= P\left(Z < \frac{t - 35 \cdot 4}{3 \cdot 1385}\right) = P(Z < 0.6745)$	M1 B1	Formulation of requirement (using c's parameters). Any use of a continuity correction scores M0 (and hence A0).	
	$\therefore t - 35 \cdot 4 = 3 \cdot 1385 \times 0 \cdot 6745 = 2 \cdot 1169$		0.6745	
	$\Rightarrow t = 37.52$	A1	c.a.o.	
	Must therefore take scheduled time as 38	M1	Round to next integer above c's value for <i>t</i> .	6
(v)	CI is given by			
	$13 \cdot 4 \pm 1 \cdot 96 \frac{2}{\sqrt{15}}$	M1	If <u>both</u> 13.4 and $2/\sqrt{15}$ are correct. (N.B. 13.4 is given as \overline{x} in the question.) (If $3/\sqrt{15}$ used, treat as mis-read and award this M1, but not the final A1.)	
	= 13·4 ± 1·0121 = (12·38(79), 14·41(21))	B1 A1	For 1.96 c.a.o. Must be expressed as an interval.	3
		1		1

				·
Q3				
(i)	Simple random sample might not be representative - e.g. it might contain only managers.	E1 E1	Or other sensible comment.	2
(11)				
(ii)	Presumably there is a list of staff, so systematic sampling would be possible. List is likely to be alphabetical, in which	E1		
	case systematic sampling might not be representative.	E1		0
	But if the list is in categories, systematic sampling could work well.	E1	Or other sensible comments.	3
(iii)	Would cover the entire population. Can get information for each category.	E1 E1		2
(iv)	5, 11, 24	B1	(4.8, 11.2, 24)	1
(v)	$\overline{x} = 345818, s_{n-1} = 69241$			
	Underlying Normality H ₀ : μ = 300000, H ₁ : μ > 300000		All given in the question.	
	Test statistic is $\frac{345818 - 300000}{\frac{69241}{6}}$	M1	Allow alternatives: 300000 + (c's 1.812) × $\frac{69241}{\sqrt{11}}$ (= 337829) for	
	$\sqrt{11}$		subsequent comparison with	
			345818. or 345818 – (c's 1.812) × $\frac{69241}{\sqrt{11}}$	
			(= 307988) for comparison with 300000.	
	=2.19(47).	A1	c.a.o. but ft from here in any case if wrong.	
			Use of $\mu - \overline{d}$ scores M1A0, but ft.	
	Refer to t_{10} . Upper 5% point is 1.812.	M1 A1	No ft from here if wrong. No ft from here if wrong.	
	Significant.	A1 A1	ft only c's test statistic.	
	Evidence that mean wealth is greater than 300 000.		ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	
	CI is given by			
	345818 ±	M1		
	$2.228 \times \frac{69241}{\sqrt{11}}$	В1 M1		
	= 345818 ± 46513·84 = (299304(·2),	A1	c.a.o. Must be expressed as an	10

4768		Mark Scheme	June 2006	
	392331(·8))		interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.	
				18

		1		
Q4				
(i)	Difference Rank of diff s -2 2 -1 1 -6 5 -3 3	M1	For differences. ZERO in this section if differences not used.	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1	For ranks. FT from here if ranks wrong	
	T = 4 + 6 = 10 (or $1 + 2 + 3 + 5 + 7 + 8 + 9 = 35$)	B1		
	Refer to tables of Wilcoxon paired (/single sample) statistic.	M1	No ft from here if wrong.	
	Lower (or upper if 35 used) 5% tail is needed.	M1	i.e. a 1-tail test. No ft from here if wrong.	
	Value for $n = 9$ is 8 (or 37 if 35 used).	A1	No ft from here if wrong.	
	Result is not significant. No evidence to suggest a real change.	A1 A1	ft only c's test statistic. ft only c's test statistic.	9
(;;)		B1	,	
(ii)	Normality of <u>differences</u> is required.	וס		
	CI MUST be based on DIFFERENCES. Differences are 53, 15, 32, 13, 61,		ZERO/6 for the CI if differences not used. Accept negatives throughout.	
	82, 70 $\overline{d} = 46 \cdot 5714$ $s_{n-1} = 27 \cdot 0485$	B1	Accept $s_{n-1}^2 = 731.62$ [$s_n = 25.0420$, but do <u>NOT</u> allow this here or in construction of CI.]	
	CI is given by 46·5714 ±	M1	Allow c's $\overline{d} \pm \dots$	
	40·3714 ⊥ 3·707	B1		
		B1	If <i>t</i> ₆ used. 99% 2-tail point for c's <i>t</i> distribution. (Independent of previous mark.)	
	$\times \frac{27 \cdot 0485}{\sqrt{7}}$	M1	Allow c's s _{n-1} .	
	= 46·5714 ± 37·8980 = (8·67(34), 84·47)	A1	c.a.o. Must be expressed as an interval. [Upper boundary is 84·4694]	
	Cannot base CI on Normal distribution because sample is small population s.d. is not known	E1 E1	Insist on "population", but allow " <i>o</i> ".	9
				18

İ			1	
Q1	$f(x) = k(1-x)$ $0 \le x \le 1$			
(i)	$\int_0^1 k(1-x) \mathrm{d}x = 1$	M1	Integral of $f(x)$, including limits (possibly implied later), equated to 1.	
	$\therefore k[x - \frac{1}{2}x^2]_0^1 = 1$			
	$\therefore k(1-\frac{1}{2}) - 0 = 1$			
	$\therefore k = 2$	E1	Convincingly shown. Beware printed answer.	
	Labelled sketch: straight line segment from	G1	Correct shape.	4
	(0,2) to (1,0).	G1	Intercepts labelled.	
(ii)	$E(X) = \int_0^1 2x(1-x)dx$	M1	Integral for $E(X)$ including limits (which may appear later).	
	$= [x^2 - \frac{2}{2}x^3]_0^1 = (1 - \frac{2}{2}) - 0 = \frac{1}{2}$	A1		
	$E(X^{2}) = \int_{0}^{1} 2x^{2} (1-x) dx$	M1	Integral for $E(X^2)$ including limits (which may appear later).	
	$= \left[\frac{2}{3}x^3 - \frac{2}{4}x^4\right]_0^1 = \left(\frac{2}{3} - \frac{1}{2}\right) - 0 = \frac{1}{6}$			
	$\operatorname{Var}(X) = \frac{1}{6} - (\frac{1}{3})^2$	M1 A1	Convincingly chown Rowers	5
	$=\frac{1}{18}$		Convincingly shown. Beware printed answer.	5
(iii)	$\mathbf{F}(x) = \int_0^x 2(1-t) \mathrm{d}t$	M1	Definition of cdf, including limits, possibly implied later. Some valid method must be seen.	
	$= [2t - t^{2}]_{0}^{x} = (2x - x^{2}) - 0 = 2x - x^{2}$	A1	[for $0 \le x \le 1$; do not insist on this.]	
	$P(X > \mu) = P(X > \frac{1}{3}) = 1 - F(\frac{1}{3})$	M1	For $1 - c$'s F(μ).	
	$= 1 - (2 \times \frac{1}{3} - (\frac{1}{3})^2) = 1 - \frac{5}{9} = \frac{4}{9}$	A1	ft c's $E(X)$ and $F(x)$. If answer only seen in decimal expect 3 d.p. or better.	4
(iv)	$F\left(1-\frac{1}{\sqrt{2}}\right) = 2\left(1-\frac{1}{\sqrt{2}}\right) - \left(1-\frac{1}{\sqrt{2}}\right)^2$	M1	Substitute $m = 1 - \frac{1}{\sqrt{2}}$ in c's cdf.	
	$= 2 - \frac{2}{\sqrt{2}} - 1 + \frac{2}{\sqrt{2}} - \frac{1}{2} = \frac{1}{2}$	E1	Convincingly shown. Beware printed answer.	2
	Alternatively:			
	$2m - m^2 = \frac{1}{2}$	M1	Form a quadratic equation	
	$\therefore m^2 - 2m + \frac{1}{2} = 0$		$F(m) = \frac{1}{2}$ and attempt to solve it. ft	
	$\therefore m = 1 \pm \frac{1}{\sqrt{2}}$		c's cdf provided it leads to a quadratic.	
	SO $m = 1 - \frac{1}{\sqrt{2}}$	E1	Convincingly shown. Beware printed answer.	
(v)	$\overline{X} \sim N(\frac{1}{3}, \frac{1}{1800})$	B1	Normal distribution.	
. ,	`5´ 1800´	B1	Mean. ft c's E(<i>X</i>).	
		B1	Correct variance.	3
				18
	1	1		

		İ.		
Q2				
(i)	H ₀ : μ = 0.6 H ₁ : μ < 0.6 Where μ is the (population) mean height of the saplings.	B1 B1 B1	Allow absence of "population" if correct notation μ is used, but do NOT allow " \overline{X} =" or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. Hypotheses in words only must include "population".	
	$\overline{x} = 0.5883$, $s_{n-1} = 0.03664$ ($s_{n-1}^2 = 0.00134$)	B1	Do not allow $s_n = 0.03507$ ($s_n^2 = 0.00123$).	
	Test statistic is $\frac{0.5883 - 0.6}{\left(\frac{0.03664}{\sqrt{12}}\right)}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 0.6 ± (c's – 1.796) × $\frac{0.03664}{\sqrt{12}}$ (=0.5810,	
			0.6190) for subsequent comparison with \overline{x} . (Or $\overline{x} \pm$ (c's –1.796) × $\frac{0.03664}{\sqrt{12}}$	
	= -1.103	A1	(=0.5693, 0.6073) for comparison with 0.6.) c.a.o. but ft from here in any case if wrong. Use of $0.6 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_{11} . Lower 5% point is -1.796 .	M1 A1	No ft from here if wrong. No ft from here if wrong. Must be –1.796 unless it is clear that absolute values are being used.	
	-1.103 > -1.796, ∴ Result is not significant.	E1	ft only c's test statistic.	
	Seems mean height of saplings meets the manager's requirements.	E1	ft only c's test statistic.	11
	Underlying population is Normal.	B1		
(ii)	CI is given by 0.5883 ± 2.201	M1 B1	ft c's $\overline{x} \pm$.	
	$\times \frac{0.03664}{\sqrt{12}}$	M1	ft c's <i>s_{n-1}</i> .	
	$= 0.5883 \pm 0.0233 = (0.565(0), 0.611(6))$	A1	c.a.o. Must be expressed as an interval.	
			ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{11} is OK.	

Jan 2007

	In repeated sampling, 95% of intervals constructed in this way will contain the true population mean.	E1	5
(iii)	Could use the Wilcoxon test. Null hypothesis is "Median = 0.6".	E1 E1	2
			18

Q3

(i)

(ii)

 $\begin{array}{l} M \sim N(44, \ 4 \cdot 8^2) \\ H \sim N(32, \ 2 \cdot 6^2) \\ P \sim N(21, \ 3 \cdot 7^2) \end{array}$

 $P(M < 50) = P(Z < \frac{50 - 44}{4 \cdot 8} = 1.25)$

 $H + P \sim N(32 + 21 = 53, 2.6^2 + 3.7^2 = 20.45)$

= 0.8944

M1 A1

A1

Β1

B1

Jan 20	007	
When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.		
For standardising. Award once, here or elsewhere.	3	
Mean. Variance. Accept sd = √20·45 = 4·522		

	2.0 + 3.7 = 20.43	ы	4.522	
	$P(H + P < 50) = P(Z < \frac{50 - 53}{\sqrt{20 \cdot 45}} = -0.6634)$			
	= 1 - 0.7465 = 0.2535	A1	c.a.o.	3
(iii)	Want $P(M > H + P)$ i.e. $P(M - (H + P) > 0)$ $M - (H + P) \sim N(44 - (32 + 21) = -9,$ $4 \cdot 8^2 + 2 \cdot 6^2 + 3 \cdot 7^2 =$ $43 \cdot 49)$	M1 B1 B1	Allow $H + P - M$ provided subsequent work is consistent. Mean. Variance. Accept sd = $\sqrt{43.49}$ = 6.594	
	P(this > 0) = P(Z > $\frac{0 - (-9)}{\sqrt{43 \cdot 49}}$ = 1.365) = 1 - 0.9139 = 0.0861	A1	c.a.o.	4
(iv)	Mean = $44 + 44 + 32 + 32 + 21 + 21$ = 194 Variance = $4 \cdot 8^2 + 4 \cdot 8^2 + 2 \cdot 6^2 + 2 \cdot 6^2 + 3 \cdot 7^2 + 3 \cdot 7^2$	B1		2
	3.7^2 = 86.98	B1	(sd = 9·3263…)	
(v)	$C \sim N(194 \times 0.15 + 10 = 39.10,$	M1 M1 A1	c's mean in (iv) × 0·15 + 10 (or subtract 10 from 40 below) ft c's mean in (iv).	
	$86 \cdot 98 \times 0 \cdot 15^2 = 1 \cdot 957 \big)$	M1	c's variance in (iv) $\times 0.15^2$	
	P(C ≤ 40) = P(Z ≤ $\frac{40 - 39 \cdot 10}{\sqrt{1 \cdot 957}}$ = 0.6433)	A1	ft c's variance in (iv).	
	= 0.7400	A1	c.a.o.	6
	Alternatively: $P(C \le 40) = P(\text{total time} \le \frac{40-10}{0.15} = 200$ minutes)	M1 M1 A1	- 10 ÷ 0.15 c.a.o.	
	$= P(Z \le \frac{200 - 194}{\sqrt{86 \cdot 98}} = 0.6433)$	M1 A1	Correct use of c's variance in (iv). ft c's mean and variance in (iv).	

Jan 2007

= 0.7400	A1	c.a.o.	
			18

		1		1
Q4				
(a)				
()	Obs Exp	M1	Combine first two rows.	
	10 6-68			
	: $X^{2} = \frac{(10 - 6 \cdot 68)^{2}}{6 \cdot 68} + \text{etc}$			
	= 1.6501 + 1.7740 + 3.3203 + 4.5018 +	M1		
	= 1.6501 + 1.7740 + 3.5203 + 4.5018 + 0.4015 + 0.8135			
	= 12.46(12)	A1		
	d.o.f. = $6 - 3 = 3$		Require d.o.f. = No. cells used –	
			3.	
	Refer to χ_3^2 .	M1	No ft from here if wrong.	
	Upper 5% point is 7.815	A1 E1	No ft from here if wrong.	
	12·46 > 7·815 \therefore Result is significant. Seems the Normal model does not fit the	E1	ft only c's test statistic. ft only c's test statistic.	
	data at the 5% level.			
	E.g.			
	 The biggest discrepancy is in the class 	E1		
	1.01 < <i>a</i> ≤ 1.02			
	 The model overestimates in classes, but underestimates in classes 	E1	Any two suitable comments.	9
(b)	Old – New: 0.007 0.002 –0.001 –0.003 0.004 -	-0.008	-0.010 0.009 -0.005 -0.016	
	Rank of diff 6 2 1 3 4	-0.008 7	-0.010 0.009 -0.005 -0.016 9 8 5 10	
		M1	For differences. ZERO in this	
			section if differences not used.	
		M1	For ranks of difference .	
		A1	All correct. ft from here if ranks wrong.	
	$W_+ = 6 + 2 + 4 + 8 = 20$	B1	Or $W_{-} = 1 + 3 + 7 + 9 + 5 + 10$	
			= 35	
	Refer to Wilcoxon single sample (/paired)	M1	No ft from here if wrong.	
	tables for $n = 10$.			
	Lower two-tail 10% point is … … 10.	M1 A1	Or, if 35 used, upper point is 45. No ft from here if wrong.	
	$20 > 10$ \therefore Result is not significant.	E1	$rac{1}{0}$ or $35 < 45$.	
			ft only c's test statistic.	
	Seems there is no reason to suppose the barometers differ.	E1	ft only c's test statistic.	9
				18

Q1	$f(t) = kt^3(2-t)$ $0 < t \le 2$			
(i)	$\int_{0}^{2} kt^{3} (2-t) dt = 1$	M1	Integral of $f(t)$, including limits (possibly implied later), equated to 1.	
	$\therefore \left[k \left(\frac{2t^4}{4} - \frac{t^5}{5} \right) \right]_0^2 = 1$			
	$\therefore k \left(8 - \frac{32}{5} \right) - 0 = 1$			
	$\therefore k \times \frac{8}{5} = 1 \qquad \therefore k = \frac{5}{8}$	E1	Convincingly shown. Beware printed answer.	2
(ii)	$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{5}{8} \left(6t^2 - 4t^3 \right) = 0$ $\therefore 6t^2 - 4t^3 = 0$	M1	Differentiate and set equal to zero.	
	$\therefore 2t^2(3-2t) = 0$			
	$\therefore t = (0 \text{ or}) \frac{3}{2}$	A1	c.a.o.	2
(iii)	$E(T) = \int_{0}^{2} \frac{5}{8} t^{4} (2-t) dt$	M1	Integral for E(<i>T</i>) including limits (which may appear later).	
	$= \left[\frac{5}{8}\left(\frac{2t^5}{5} - \frac{t^6}{6}\right)\right]_0^2 = \frac{5}{8} \times \left(\frac{64}{5} - \frac{64}{6}\right) = \frac{4}{3}$	A1		
	$E(T^{2}) = \int_{0}^{2} \frac{5}{8} t^{5} (2-t) dt$	M1	Integral for $E(T^2)$ including limits (which may appear later).	
	$= \left[\frac{5}{8}\left(\frac{2t^{6}}{6} - \frac{t^{7}}{7}\right)\right]_{0}^{2} = \frac{5}{8} \times \left(\frac{128}{6} - \frac{128}{7}\right) = \frac{40}{21}$			
	$\operatorname{Var}(T) = \frac{40}{21} - \left(\frac{4}{3}\right)^2 = \frac{120 - 112}{63} = \frac{8}{63}$	M1 A1	Convincingly shown. Beware printed answer.	5
(iv)	$\overline{T} \sim N\left(\frac{4}{3}, \ \frac{8}{63n}\right)$	B1 B1 B1	Normal distribution. Mean. ft c's $E(T)$. Correct variance.	3
		<u> </u>		

(v)	$n = 100, \bar{t} = \frac{145 \cdot 2}{100} = 1 \cdot 452,$ $s_{n-1}^2 = \frac{223 \cdot 41 - 100 \times 1 \cdot 452^2}{99} = 0 \cdot 12707$	B1	Both mean and variance. Accept sd = 0.3565	
	CI is given by $1.452 \pm$	M1	ft c's $\overline{t} \pm .$	
	1.96	B1		
	$\times \frac{0.3565}{\sqrt{100}}$	M1	ft c's S_{n1} .	
	$= 1.452 \pm 0.0698 = (1.382, 1.522)$	A1	c.a.o. Must be expressed as an interval.	
	Since $E(T)$ (= 4/3) lies outside this interval it seems the model may not be appropriate.	E1		6
				18

Q2	$Ca \sim N(60.2, 5.2^{2})$ $Co \sim N(33.9, 6.3^{2})$ $L \sim N(52.4, 4.9^{2})$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$P(Co < 40) = P(Z < \frac{40 - 33 \cdot 9}{6 \cdot 3} = 0.9683)$	M1	For standardising. Award once, here	
	0.5	A1	or elsewhere.	
	= 0.8336	A1	c.a.o.	3
(ii)	Want $P(L > Ca)$ i.e. $P(L - Ca > 0)$	M1	Allow $Ca - L$ provided subsequent work is consistent.	
	$L - Ca \sim N(52.4 - 60.2 = -7.8),$	B1	Mean.	
	$4 \cdot 9^2 + 5 \cdot 2^2 = 51 \cdot 05$	B1	Variance. Accept sd = $\sqrt{51.05}$ =	
			7.1449	
	P(this > 0) = P(Z > $\frac{0 - (-7 \cdot 8)}{\sqrt{51 \cdot 05}} = 1.0917)$			
	$\sqrt{31.03}$ = 1 - 0.8625 = 0.1375	A1		4
	- 1 - 0.8025 - 0.1575	AI	c.a.o.	4
(iii)	Want P($Ca_1 + Ca_2 + Ca_3 + Ca_4 > 225$)	M1		
~ /	$Ca_1 + \dots \sim N(60.2 + 60.2 + 60.2 + 60.2 = 240.8)$	B1	Mean.	
	$5 \cdot 2^2 + 5 \cdot 2^2 + 5 \cdot 2^2 + 5 \cdot 2^2 = 108 \cdot 16$	B1	Variance. Accept sd= $\sqrt{108.16}=10.4$.	
			L	
	$P(\text{this} > 225) = P(Z > \frac{225 - 240 \cdot 8}{\sqrt{108 \cdot 16}} = -1.519)$			
	= 0.9356	A1	c.a.o.	
	Must assume that the weeks are independent of each other.	B1		5
(iv)	$R \sim N(0.05 \times 60.2 + 0.1 \times 33.9 + 0.2 \times 52.4 = 16.88,$	M1	Mean.	
(1)	11 - 11(0 - 05 - 00 - 2 + 0 - 1 - 55 - 9 + 0 - 2 - 52 - 7 - 10 - 00,	A1		
	$0.05^2 \times 5.2^2 + 0.1^2 \times 6.3^2 + 0.2^2 \times 4.9^2 = 1.4249$	M1	For 0.05^2 etc.	
		M1	For $\times 5.2^2$ etc.	
		A1	Accept sd = $\sqrt{1.4249} = 1.1937$.	
	$P(R > 20) = P(Z > \frac{20 - 16 \cdot 88}{\sqrt{1 \cdot 4249}} = 2.613)$		•	
	= 1 - 0.9955 = 0.0045	A1	c.a.o.	6
				18

Q3				
(a) (i)	$H_0: \mu_D = 0$ $H_1: \mu_D > 0$	B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H ₁ , or $\mu_A - \mu_B$ etc provided adequately defined.	
	Where μ_D is the (population) mean reduction in absenteeism.	B1	Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. Hypotheses in words only must include "population".	
	Must assume Normality of differences.	B1 B1	merude population :	4
(ii)	Differences (reductions) (before – after) 1·7, 0·7, 0·6, –1·3, 0·1, –0·9, 0·6, –0·7, 0·4, 2·7, 0·9		Allow "after – before" if consistent with alternatives above.	
	$\overline{x} = 0.4364, \ s_{n1} = 1.1518 \ (s_{n1}^2 = 1.3265)$	B1	Do not allow $s_n = 1.098 \ (s_n^2 = 1.205).$	
	Test statistic is $\frac{0.4364 - 0}{\left(\frac{1.1518}{\sqrt{11}}\right)}$	M1	Allow c's \overline{x} and/or s_{n1} . Allow alternative: $0 \pm (c's 1.812) \times \frac{1.1518}{\sqrt{11}} (= -0.6293, 0.6293)$ for subsequent comparison with \overline{x} .	
			(Or $\overline{x} \pm (c's \ 1.812) \times \frac{1.1518}{\sqrt{11}} (= -0.1929, \ 1.0657)$ for comparison with	
	= 1.256(56)	A1	0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_{10} . Upper 5% point is 1.812.	M1 A1	No ft from here if wrong. No ft from here if wrong. For alternative H_1 expect -1.812 unless it is clear that absolute values are being used.	
	1.256 < 1.812, ∴ Result is not significant. Seems there has been no reduction in mean absenteeism.	E1 E1	ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	7

(b)	For "days lost after"			
	$\overline{x} = 4 \cdot 6182, \ s_{n1} = 1 \cdot 4851 \ (s_{n1}^2 = 2 \cdot 2056)$	B1	Do not allow $s_n = 1.4160 (s_n^2 =$	
			2.0051).	
	CI is given by $4.6182 \pm$	M1	ft c's $\overline{x} \pm$.	
	2.228	B1		
	$\times \frac{1.4851}{\sqrt{11}}$	M 1	ft c's s_{n1} .	
	$^{\sim}$ $\sqrt{11}$			
	$= 4.6182 \pm 0.9976 = (3.620(6), 5.615(8))$	A1	c.a.o. Must be expressed as an	
			interval.	
			ZERO if not same distribution as	
			test. Same wrong distribution scores maximum M1B0M1A0.	
			Recovery to t_{10} is OK.	
	Assume Normality of population of "days lost after".	E1		
	Since 3.5 lies outside the interval it seems that	E1		7
	the target has not been achieved.			
				18
I				10

Q4									
(i)				1					
	Obs	21	24	12	15	13	9	6	
	Exp	26.53	17.22	20.25	11.00	10.94	8.74	5.32	
					M1		ities \times 100.		
	(2)	2 5 5 2			A1	All Expe	ected freque	encies correct.	
	$\therefore X^2 = \frac{(21)}{2}$	$\frac{(-26\cdot53)^2}{26\cdot53}$ +	etc		M1				
				.4545 + 0.3879		At least	4 values co	rrect	
		7+0.0869	5011 1	1545 105075	111	In least	+ values co	iicet.	
	= 9.1203	1100000			A1				
	d.o.f. = 7 – Refer to χ_0				M1	No ft fro	om here if w	vrong.	
			0					e	
		point is 12.5			A1 E1		om here if w	•	
				t significant.	E1	-	's test statis		
	5% leve		nodel III	ts the data at the	E1	It only c	's test statis	suc.	9
(ii)									
	Data	Diff = data	a –124	Rank of diff	M1	For diffe	erences.		
	239	115		9	M1	For rank	s of differe	ence .	
	77	-47		3	A1	All corre	ect.		
	179	55		4		ft from h	here if ranks	s wrong.	
	221	97		7					
	100 312	 		2 10					
	512	-72		5					
	129	5		1					
	236	112		8					
	42	-82		6					
					DI	Or W =	$9 \pm 1 \pm 7 \pm$	-10 + 1 + 8 = 39	
	$W_{-} = 3 + 2$	+5+6=16)		B1	$01 m_{+} -$) T T T / T	-10 + 1 + 8 = 39	
	Refer to W	ilcoxon sing		e (/paired)	B1 M1		om here if w		
	Refer to W tables for <i>n</i>	ilcoxon sing = 10.	le sampl	le (/paired)	M1	No ft fro	om here if w	vrong.	
	Refer to W tables for <i>n</i>	ilcoxon sing	le sampl			No ft fro Or, if 39	om here if w used, uppe	vrong. er point is 45.	
	Refer to W tables for <i>n</i> Lower two	ilcoxon sing = 10. -tail 10% po	le sampl int is	10.	M1 M1A1	No ft fro Or, if 39 No ft fro	om here if w used, uppe om here if w	vrong. er point is 45.	
	Refer to W tables for <i>n</i> Lower two	ilcoxon sing = 10.	le sampl int is	10.	M1	No ft fro Or, if 39 No ft fro Or 39 <	om here if w used, uppe om here if w 45.	vrong. er point is 45. vrong.	
	Refer to W tables for <i>n</i> Lower two 16 > 10	ilcoxon sing = 10. -tail 10% po Result is no	le sampl int is t signific	10. cant.	M1 M1A1 E1	No ft fro Or, if 39 No ft fro Or 39 < ft only c	om here if w used, uppe om here if w 45. 's test statis	vrong. er point is 45. vrong. stic.	
	Refer to W tables for <i>n</i> Lower two $16 > 10$ \therefore Seems ther	ilcoxon sing = 10. -tail 10% po Result is no e is no evide	le sampl int is t signific	10.	M1 M1A1	No ft fro Or, if 39 No ft fro Or 39 < ft only c	om here if w used, uppe om here if w 45.	vrong. er point is 45. vrong. stic.	9
	Refer to W tables for <i>n</i> Lower two $16 > 10$ \therefore Seems ther	ilcoxon sing = 10. -tail 10% po Result is no	le sampl int is t signific	10. cant.	M1 M1A1 E1	No ft fro Or, if 39 No ft fro Or 39 < ft only c	om here if w used, uppe om here if w 45. 's test statis	vrong. er point is 45. vrong. stic.	9

Q1	<i>l</i> ,-				1		
(a)	$\mathbf{P}(T > t) = \frac{k}{t^2}$						
(i)	F(t) = P(T <		T > t)		M1	Use of 1 – P().	
	$\therefore \mathbf{F}(t) = 1 - \frac{k}{t^2}$						
	F(1) = 0				M1		
	$\therefore 1 - \frac{k}{1^2} = 0$						
	1						
/	∴ <i>k</i> = 1				A1	Beware: answer given.	3
(ii)	$f(t) = \frac{d F(t)}{d}$	$\frac{t}{t}$			M1	Attempt to differentiate c's cdf.	
		ı			Λ1	(For t > 1, but condend abconce	2
	$=\frac{2}{t^3}$				A1	(For $t \ge 1$, but condone absence of this.) Ft c's cdf provided	2
		_				answer sensible.	
(iii)	$\mu = \int_{1}^{\infty} t f(t) dt$	$f = \int_{1}^{\infty} \frac{2}{t^2} dt$			M1	Correct form of integral for the mean, with correct limits. Ft c's	
						pdf.	
	$\left\lceil -2 \right\rceil^{\infty}$				A1	Correctly integrated. Ft c's pdf.	
	$=\left[\frac{-2}{t}\right]_{1}^{\infty}$						
	= 0 - (-2)	= 2			A1	Correct use of limits leading to	3
						correct value. Ft c's pdf provided	
(b)	H ₀ : <i>m</i> = 5.4				B1	answer sensible. Both hypotheses. Hypotheses in	
(~)	H ₁ : <i>m</i> ≠ 5.4					words only must include	
	where <i>m</i> is	the popula	tion media	n time for	B1	"population".	
	the task.					For adequate verbal definition.	
	Times	- 5.4	Rank of				
			diff				
	6.4	1.0	8				
	5.9 5.0	0.5	5 4				
	6.2	0.4	7				
	6.8	1.4	10		M1	for subtracting 5.4.	
	6.0	0.6	6		M1	for ranks.	
	5.2	-0.2	2		A1	FT if ranks wrong.	
	6.5 5.7	<u> </u>	9 3				
	5.3	-0.1	1				
	<i>W</i> _− = 1 +2 +	`			B1		
	3+5+6+7+8			aomela	N 4 4	No ft from horo if wrong	
	Refer to tab (/paired) sta			e sampie	M1	No ft from here if wrong.	
	Lower (or u			le-tailed	A1	i.e. a 2-tail test. No ft from here if	
	5% point is	8 (or 47 if 4				wrong.	
	Result is sig		<i>.</i>		A1	ft only c's test statistic.	
	Seems that		n time is no	o longer as	A1	ft only c's test statistic.	10
L	previously t	nought.					

January 2008

		<u> </u>		
Q2	<i>X</i> ~ N(260, σ = 24)		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(X < 300) = P(Z < \frac{300 - 260}{24} = 1.6667)$ = 0.9522	M1 A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$Y \sim N(260 \times 0.6 = 156, 24^2 \times 0.6^2 = 207.36$ $P(Y > 175) = P(Z > \frac{175 - 156}{14.4} = 1.3194)$	B1 B1	Mean. Variance. Accept sd (= 14.4).	
	= 1 - 0.9063 = 0.0937	A1	C.a.o.	3
(iii)	$Y_1 + Y_2 + Y_3 + Y_4 \sim N(624, 829.44)$	B1 B1	Mean. Ft mean of (ii). Variance. Accept sd (= 28.8). Ft variance of (ii).	
	$P(\text{this} < 600) = P(Z < \frac{600 - 624}{28.8} = -0.8333)$			
	= 1 - 0.7976 = 0.2024	A1	c.a.o.	3
(iv)	Require w such that	M1	Formulation of requirement.	
	$0.975 = P(above > w) = P\left(Z > \frac{w - 624}{28.8}\right)$ $= P(Z > -1.96)$	B1	- 1.96	
	= P(Z > -1.96) ∴ w - 624 = 28.8 × -1.96 ⇒ w = 567.5(52)	A1	Ft parameters of (iii).	3
(v)	$On \sim N(150, \sigma = 18)$ $X_1 + X_2 + X_3 + On_1 + On_2 \sim N(1080, 2376)$ $P(4 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + $	B1 B1	Mean. Variance. Accept sd (= 48.744).	
	$P(\text{this} > 1000) = P(Z > \frac{1000 - 1080}{48.744} = -1.6412)$ $= 0.9496$	A1	c.a.o.	3
(vi)	Given $\bar{x} = 252.4 s_{n-1} = 24.6$			
	Cl is given by $252.4 \pm 2.576 \times \frac{24.6}{\sqrt{100}}$	M1	Correct use of 252.4 and $24.6/\sqrt{100}$.	
	= 252.4 ± 6.33(6) = (246.0(63), 258.7(36))	B1 A1	For 2.576. c.a.o. Must be expressed as an interval.	3
				18

4768

Q3		1		
(i)	A <i>t</i> test should be used because			
(-)	the sample is small,	E1		
	the population variance is unknown,	E1		
	the background population is Normal	E1		3
(ii)	$H_0: \mu = 380$	B1	Both hypotheses. Hypotheses in	
()	$H_1: \mu < 380$		words only must include	
			"population".	
	where μ is the mean temperature in the	B1	For adequate verbal definition.	
	chamber.		Allow absence of "population" if	
			correct notation μ is used, but do	
			NOT allow " $\overline{X} = \dots$ " or similar	
			unless \overline{X} is clearly and explicitly	
			stated to be a population mean.	
	- 272.025 0.260		a 0.000 hut de NOT elleur this	
	$\overline{x} = 373.825$ $s_{n-1} = 9.368$	B1	$s_n = 8.969$ but do <u>NOT</u> allow this here or in construction of test	
			statistic, but FT from there.	
	-	M1	Allow c's \overline{x} and/or s_{n-1} .	
	Test statistic is $\frac{373.825 - 380}{9.368}$		Allow alternative: $380 + (c's - 1)$	
	$\sqrt{12}$		$1.796) \times \frac{9.368}{\sqrt{12}}$ (= 375.143) for	
			V12	
			subsequent comparison with \overline{x} .	
			(Or \bar{x} – (c's –1.796) × $\frac{9.368}{\sqrt{12}}$	
			(= 378.681) for comparison with	
			380.)	
	= -2.283(359).	A1	c.a.o. but ft from here in any case	
			if wrong.	
			Use of $380 - \overline{x}$ scores M1A0,	
			but ft.	
	Refer to t_{11} .	M1	No ft from here if wrong.	
	Single-tailed 5% point is –1.796.	A1	Must be minus 1.796 unless	
	3		absolute values are being	
			compared. No ft from here if	
			wrong.	
	Significant.	A1	ft only c's test statistic.	
	Seems mean temperature in the chamber	A1	ft only c's test statistic.	9
/:::\	has fallen.			
(iii)	CI is given by 373.825 ±	M1		
	373.825 ± 2.201	B1		
	-			
	$\times \frac{9.368}{\sqrt{12}}$	M1		
	$= 373.825 \pm 5.952 = (367.87(3), 379.77(7))$	A1	c.a.o. Must be expressed as an	4
			interval.	
			ZERO/4 if not same distribution	
			as test. Same wrong distribution	
			scores maximum M1B0M1A0.	
<i>/</i> , `			Recovery to t_{11} is OK.	ļ
(iv)	Advantage: greater certainty.	E1	Or equivalents.	
	Disadvantage: less precision.	E1		2
				18

Q4									
(a) (i)	$\overline{x} = \frac{1125}{500} = 2.25$ For binomial E $\therefore \hat{p} = \frac{2.25}{5} = 0.4$	$E(X) = n \times$	p		B1 M1 Use of mean of binomial distribution. May be implicit. A1 Beware: answer given.			be implicit.	3
(ii)) $ \frac{f_o 32 110 154}{f_e (\text{calc}) 25.164 102.944 168.455} \\ f_e (\text{tables}) 25.15 102.95 168.45 $ $ X^2 = 1.8571 + 0.4836 + 1.2404 + 1.1938 + \\ 0.7763 + 4.9737 $				125 137 137 M1 A1 M1	.827 .85 Calcu frequ All co Or us 1.865	63 56.384 56.35 ulation of ex encies. prrect. sing tables: 57 + 0.4828	+ 1.2396 +	
	= 10.52(49) Refer to χ_4^2 . Upper 5% poir Significant. Suggests bino	nt is 9.488		t fit.	A1 M1 A1 A1 A1	1.1978 + 0.7848 + 4.9257 c.a.o. Or using tables: 10.49(64)			
	The model appears to overestimate in the middle and to underestimate at the tails. The biggest discrepancy is at $X = 5$. A binomial model assumes all trials are independent with a constant probability of "success". It seems unlikely that there will be independence within families and/or that <i>p</i> will be the same for all families.				E1 E1 E2	comr signif NOT (E2, which	nent e.g. at ficance, the have been 1, 0) Any se	result would	12
(b)	 <i>p</i> will be the same for all families. She should try to choose a simple random sample which would involve establishing a sampling frame and using some form of random number generator. 				E1 E1 E1	pract rando Allow sugg syste every strati	ical limitatio om sample. / other sens estions. E.g matic samp / tenth famil	l ble - choosing y; - by the number	3

4768

4768 Statistics 3

Q1	$f(x) = k(20 - x)$ $0 \le x \le 20$			
(a) (i)	$\int_{0}^{20} k(20-x) dx = \left[k \left(20x - \frac{x^2}{2} \right) \right]_{0}^{20} = k \times 200 = 1$	M1	Integral of $f(x)$, including limits (which may appear later), set equal to 1. Accept a geometrical approach using the area of a	
	$\therefore k = \frac{1}{200}$	A1	triangle. C.a.o.	
	Straight line graph with negative gradient, in the first quadrant.	G1		
	Intercept correctly labelled (20, 0), with nothing extending beyond these points.	G1		
	Sarah is more likely to have only a short time to wait for the bus.	E1		5
(ii)	Cdf F(x) = $\int_{0}^{x} f(t) dt$ = $\frac{1}{200} \left(20x - \frac{x^{2}}{2} \right)$ = $\frac{x}{10} - \frac{x^{2}}{400}$	M1	Definition of cdf, including limits (or use of "+c" and attempt to evaluate it), possibly implied later. Some valid method must be seen.	
	$=\frac{1}{10}-\frac{1}{400}$	A1	Or equivalent expression; condone absence of domain [0, 20].	
	P(X > 10) = 1 - F(10) = 1 - (1 - ¹ / ₄) = ¹ / ₄	M1 A1	Correct use of c's cdf. f.t. c's cdf. Accept geometrical method, e.g area = $\frac{1}{2}(20 - 10)f(10)$, or similarity.	4
(iii)	Median time, <i>m</i> , is given by $F(m) = \frac{1}{2}$.	M1	Definition of median used, leading to the formation of a quadratic equation.	
	$\therefore \frac{m}{10} - \frac{m^2}{400} = \frac{1}{2}$	N44	Deerronge and attempt to achie	
	$\therefore m^2 - 40m + 200 = 0$	M1	Rearrange and attempt to solve the quadratic equation.	
	∴ <i>m</i> = 5.86	A1	Other solution is 34.14; no explicit reference to/rejection of it is required.	3

(b) (i)	A simple random sample is one where every sample of the required size has an equal chance of being chosen.	E2	S.C. Allow E1 for "Every member of the population has an equal chance of being chosen independently of every other member".	2
(ii)	Identify clusters which are capable of representing the population as a whole. Choose a random sample of clusters. Randomly sample or enumerate within the chosen clusters.	E1 E1 E1		3
(iii)	A random sample of the school population might involve having to interview single or small numbers of pupils from a large number of schools across the entire country. Therefore it would be more practical to use a cluster sample.	E1 E1	For "practical" accept e.g. convenient / efficient / economical.	2
				19

Mark Scheme

PMT

				1
Q2	$A \sim N(100, \sigma = 1.9)$ $B \sim N(50, \sigma = 1.3)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(A < 103) = P\left(Z < \frac{103 - 100}{1.9} = 1.5789\right)$	M1	For standardising. Award once,	
	= 0.9429	A1 A1	here or elsewhere.	3
	= 0.9429	AI	c.a.o.	3
(ii)	$A_1 + A_2 + A_3 \sim N(300,$	B1	Mean.	
	$\sigma^2 = 1.9^2 + 1.9^2 + 1.9^2 = 10.83 $	B1	Variance. Accept sd (= 3.291).	
	P(this > 306) =			
	$P\left(Z > \frac{306 - 300}{3 \cdot 291} = 1 \cdot 823\right) = 1 - 0 \cdot 9658 = 0.0342$	A1	c.a.o.	3
(iii)	$A + B \sim N(150,$	B1	Mean.	
(11)	$A + B \sim N(150, \sigma^2 = 1.9^2 + 1.3^2 = 5.3)$	вт B1		
		DI	Variance. Accept sd (= 2.302).	
	P(this > 147) = P $\left(Z > \frac{147 - 150}{2 \cdot 302} = -1.303\right)$			1
	= 0.9037	A1	C.a.o.	3
(iv)	$B_1 + B_2 - A \sim N(0,$	B1	Mean. Or $A - (B_1 + B_2)$.	
	$1 \cdot 3^2 + 1 \cdot 3^2 + 1 \cdot 9^2 = 6 \cdot 99$	B1	Variance. Accept sd (= 2.644).	1
	P(-3 < this < 3)	M1 A1	Formulation of requirement two sided.	
	$= P\left(\frac{-3-0}{2.644} < Z < \frac{3-0}{2.644}\right) = P\left(-1.135 < Z < 1.135\right)$			1
	$= 2 \times 0.8718 - 1 = 0.7436$	A1	c.a.o.	5
(v)	Given $\bar{x} = 302.3 s_{n-1} = 3.7$			
	Cl is given by $302.3 \pm 1.96 \times \frac{3.7}{\sqrt{100}}$	M1	Correct use of 302.3 and $3.7/\sqrt{100}$.	
		B1	For 1.96	
	$= 302.3 \pm 0.7252 = (301.57(48), 303.02(52))$	A1	c.a.o. Must be expressed as an interval.	1
	303·02(52)) The batch appears not to be as specified	E1		4
	since 300 is outside the confidence			1
	interval.			
1				18

Mark Scheme

PMT

Q3						
(a) (i)	H ₀ : $\mu_D = 0$ (or $\mu_I = \mu_{II}$) H ₁ : $\mu_D \neq 0$ (or $\mu_{II} \neq \mu_I$) where μ_D is "mean for II – mean Normality of <u>differences</u> is requi			B1 B1 B1	Both. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X}_{I} = \overline{X}_{II}$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	3
(ii)	MUST be PAIRED COMPARIS Differences are:	ON tte	st.			
	10.0 26.8 42.7 2.4 \overline{d} = 11.6 s_{n-1} = 17.707 Test statistic is $\frac{11.6 - 0}{\frac{17.707}{\sqrt{8}}}$	-14.9	-2.0	16.3 B1 M1	$s_n = 16.563$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there. Allow c's \overline{d} and/or s_{n-1} . Allow alternative: 0 + (c's 2.365) $\times \frac{17.707}{\sqrt{8}}$ (= 14.806) for	
	= 1.852(92).		A1	subsequent comparison with \overline{d} . (Or \overline{d} – (c's 2.365) × $\frac{17.707}{\sqrt{8}}$ (=-3.206) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of 0 – \overline{d} scores M1A0, but ft.	
	Refer to <i>t</i> ₇ . Double-tailed 5% point is 2.365. Not significant. Seems there is no difference be mean yields of the two types	etween		M1 A1 A1 A1	No ft from here if wrong. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. Special case: (t_8 and 2.306) can score 1 of these last 2 marks if either form of conclusion is given.	7

<u> </u>													
(b)	Diff	-5	4	-14	-3	6		1	-11	-8	-7	-9	
	Rank of diff	4	3	10	2	5		1	9	7	6	8	
							M1	F	or diffe	rences	s. ZERO	O in this	
								S	section i	f differ	ences i	not used.	
							M1	F	or rank	s.			
							A1	F	T from	here if	ranks	wrong	
	$W_{+} = 1 + 3 + 5 =$:			B1						
	2+4+6+7+8+9-	+10 = 4	46)										
	Refer to tables			paired	(/single	e	M1	1	No ft froi	m here	e if wroi	ng.	
	sample) statist						• •						
	Lower (or uppe				-tailed		A1			ail test	. No ft	from here if	
	5% point is 8 (ed).					vrong.				
	Result is not si						A1	-	t only c'				
	No evidence to	sugge	est the	tasters	s differ	on	A1	f	t only c'	s test s	statistic).	8
	the whole.												
													18

Q4										
(a) (i)	$\overline{x} = \frac{310}{100} = 3$ $s^{2} = \frac{1288 - 1}{100}$ Evidence of variance is	$\frac{100 \times 3.1^2}{99}$	pport Po	isson sin		B1 B1 E1				3
(ii)				1	1		L	1		
	f _o f _e	6 4.50	16 13.97	19 21.65	18 22.37	<u>17</u> 17.33	14 10.75	6 5.55	4 0 2.46 1.42	
	Ve Merged	2		21.05	22.51	17.55	10.75	0.00	10 9.43	
		10.	.47	1	<u> </u>	M1 A1 A1	Calculat frequenc Last cell All other	cies. correct.	kpected	
	$X^2 = 0.67$			8537 + 0).0063 +	M1 M1	combine above, b	ed as full out requi ed as a r	. (Condone if not ly as shown re top two cells ninimum.) ² .	
	0.9826 = 2.87	6 + 0.034 6(2)	15			A1	(Condor Depends precedir	s on bot		
	Refer to χ e.g. Upper	-	int is 7.7	79.		M1	wrongly	grouped	(= cells – 2) from d or ungrouped therwise, no FT if	
	Not signific Suggests at any r	Poisson				A1 A1 A1	ft only c' ft only c'	s test st		10
(b)	CI is given	1.465	± 2·262	2		M1 B1	lf <u>both</u> 1 correct.	.465 and	d 0.3288/√10 are	
			-	$<\frac{0.3288}{\sqrt{10}}$		B1	If t ₉ use 95% 2-ta distributi previous	ail point f on (Inde	for c's <i>t</i> pendent of	
	= 1.46	5 ± 0.23		√10 298, 1.70	002)	A1	c.a.o. M interval.	ust be e	xpressed as an	4
										17

4768 Statistics 3

r		<u> </u>		
Q1 (a)	$f(x) = \lambda x^c, \ 0 \le x \le 1, \ \lambda > 1$			
(i)	$\int_0^1 \lambda x^c dx = 1$	M1	Correct integral, with limits (possibly appearing later), set equal to 1.	
	$\therefore \left[\frac{\lambda x^{c+1}}{c+1}\right]_0^1 = 1$	M1	Integration correct and limits used.	
	$\therefore \frac{\lambda}{c+1} = 1 \qquad \therefore c = \lambda - 1$	A1	c.a.o.	3
(ii)	$\mathbf{E}(X) = \int_0^1 \lambda x^\lambda \mathrm{d}x$	M1	Correct form of integral for $E(X)$. Allow c's expression for <i>c</i> .	
	$= \left\lceil \frac{\lambda x^{\lambda+1}}{\lambda+1} \right\rceil_{0}^{1} = \frac{\lambda}{\lambda+1}.$	M1	Integration correct and limits used. ft c's <i>c</i> .	
	$\left\lfloor \lambda + 1 \right\rfloor_{0} \qquad \lambda + 1$	A1		3
(iii)	$E(X^2) = \int_0^1 \lambda x^{\lambda + 1} dx$	M1	Correct form of integral for $E(X^2)$. Allow c's expression for <i>c</i> .	
	$= \left[\frac{\lambda x^{\lambda+2}}{\lambda+2}\right]_{0}^{1} = \frac{\lambda}{\lambda+2}.$	A1		
	$\operatorname{Var}(X) = \frac{\lambda}{\lambda+2} - \left(\frac{\lambda}{\lambda+1}\right)^2 = \frac{\lambda(\lambda+1)^2 - \lambda^2(\lambda+2)}{(\lambda+2)(\lambda+1)^2}$	M1	Use of $Var(X) = E(X^2) - E(X)^2$. Allow c's $E(X^2)$ and $E(X)$.	
	$=\frac{\lambda^3+2\lambda^2+\lambda-\lambda^3-2\lambda^2}{(\lambda+2)(\lambda+1)^2}=\frac{\lambda}{(\lambda+2)(\lambda+1)^2}.$	A1	Algebra shown convincingly. Beware printed answer.	4
(b)	$\begin{tabular}{ c c c c c c c } \hline Times & -32 & Rank of & & & & & & & & & & & & & & & & & & $	M1 M1 A1	 H₀: <i>m</i> = 32, H₁: <i>m</i> < 32, where <i>m</i> is the population median time. for subtracting 32. for ranks. ft if ranks wrong. 	
	$W_+ = 1 + 2 + 3 + 4 + 9 = 19$	B1	(or $W_{-}=5+6+7+8+10+11+12$ = 59)	
	Refer to Wilcoxon single sample tables for $n = 12$.	M1	No ft from here if wrong.	
	Lower (or upper if 59 used) 5% tail is 17 (or 61 if 59 used).	A1	i.e. a 1-tail test. No ft from here if wrong.	
	Result is not significant.	A1 A1	ft only c's test statistic.	8
	Seems that there is no evidence that Godfrey's times have decreased.	AI	ft only c's test statistic.	0
				18

		1		1
Q2	$V_G \sim N(56.5, 2.9^2)$ $V_W \sim N(38.4, 1.1^2)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(V_G < 60) = P(Z < \frac{60 - 56.5}{2.9} = 1.2069)$ = 0.8862	M1 A1 A1	For standardising. Award once, here or elsewhere.	3
(ii)	$V_T \sim N(56.5 + 38.4 = 94.9,$ $2.9^2 + 1.1^2 = 9.62)$ $P(\text{this} > 100) = P(Z > \frac{100 - 94.9}{3.1016} = 1.6443)$	B1 B1	Mean. Variance. Accept sd (= 3.1016).	
	= 1 - 0.9499 = 0.0501	A1	c.a.o.	3
(iii)	$W_T \sim N(3.1 \times 56.5 + 0.8 \times 38.4 = 205.87,$ $3.1^2 \times 2.9^2 + 0.8^2 \times 1.1^2 = 81.5945)$	M1 A1 M1 A1	Use of "mass = density × volume" Mean. Variance. Accept sd (= 9.0330).	
	P(200 < this < 220) = $P(\frac{200 - 205.87}{9.0330} < Z < \frac{220 - 205.87}{9.0330})$ = $P(-0.6498 < Z < 1.5643)$	M1	Formulation of requirement.	
	= 0.9411 - (1 - 0.7422) = 0.6833	A1	c.a.o.	6
(iv)	Given $\bar{x} = 205.6 s_{n-1} = 8.51$ H ₀ : $\mu = 200$, H ₁ : $\mu > 200$ Test statistic is $\frac{205.6 - 200}{\frac{8.51}{\sqrt{10}}}$	M1	Allow alternative: $200 + (c's \ 1.833)$ × $\frac{8.51}{\sqrt{10}}$ (= 204.933) for subsequent comparison with \overline{x} .	
	= 2.081.	A1	(Or \overline{x} – (c's 1.833) × $\frac{8.51}{\sqrt{10}}$ (= 200.667) for comparison with 200.) c.a.o. but ft from here in any case if wrong. Use of 200 – \overline{x} scores M1A0, but ft.	
	Refer to t_9 .	M1	No ft from here if wrong. P(t > 2.081) = 0.0336.	
	Single-tailed 5% point is 1.833.	A1	No ft from here if wrong.	
	Significant. Seems that the required reduction of the mean weight has not been achieved.	A1 A1	ft only c's test statistic. ft only c's test statistic.	6
				18

January 2009

00				
Q3				
(i)	In this situation a paired test is appropriate because there are clearly differences between specimens which the pairing eliminates.	E1 E1		2
(ii)	H ₀ : $\mu_D = 0$ H ₁ : $\mu_D > 0$ Where μ_D is the (population) mean reduction in hormone concentration.	B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H ₁ , or $\mu_A - \mu_B$ etc provided adequately defined. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	-
	 Must assume Sample is random Normality of differences 	B1 B1		4
(iii)	MUST be PAIRED COMPARISON t test.Differences (reductions) (before – after) are-0.752.712.596.070.71-1.85-0.983.56		Allow "after – before" if consistent with alternatives above. 2.95 1.59 4.17 0.38 0.88 0.95	
	$\overline{x} = 1.65$ $s_{n-1} = 2.100(3)$ $(s_{n-1}^2 = 4.4112)$	B1	Do not allow $s_n = 2.0291 (s_n^2 =$	
		M1	4.1171) Allow c's \overline{x} and/or s_{n-1} .	
	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$ = 3.043.	M1 A1	4.1171)	
	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$ = 3.043. Refer to t_{14} .	A1 M1	4.1171) Allow c's \overline{x} and/or s_{n-1} . Allow alternative: $0 + (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 1.423) for subsequent comparison with \overline{x} . (Or $\overline{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft. No ft from here if wrong. P($t > 3.043$) = 0.00438.	
	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$ $= 3.043.$	A1	4.1171) Allow c's \overline{x} and/or s_{n-1} . Allow alternative: $0 + (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 1.423) for subsequent comparison with \overline{x} . (Or $\overline{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft. No ft from here if wrong.	7
(iv)	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$ = 3.043. Refer to t_{14} . Single-tailed 1% point is 2.624. Significant. Seems mean concentration of hormone has fallen. CI is 1.65 ±	A1 M1 A1 A1	4.1171) Allow c's \overline{x} and/or s_{n-1} . Allow alternative: $0 + (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 1.423) for subsequent comparison with \overline{x} . (Or $\overline{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft. No ft from here if wrong. P($t > 3.043$) = 0.00438. No ft from here if wrong. ft only c's test statistic.	7
(iv)	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$ = 3.043. Refer to t_{14} . Single-tailed 1% point is 2.624. Significant. Seems mean concentration of hormone has fallen. CI is 1.65 $\pm k \times \frac{2.100}{\sqrt{15}} = (0.4869, 2.8131)$	A1 M1 A1 A1 A1 M1 M1 A1	4.1171) Allow c's \overline{x} and/or s_{n-1} . Allow alternative: $0 + (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 1.423) for subsequent comparison with \overline{x} . (Or $\overline{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft. No ft from here if wrong. P($t > 3.043$) = 0.00438. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. ft c's $\overline{x} \pm$. ft c's $\overline{x} \pm$. ft c's $\overline{s_{n1}}$. A correct equation in <i>k</i> using either end of the interval or the width of the interval.	7
(iv)	Test statistic is $\frac{1.65 - 0}{\frac{2.100}{\sqrt{15}}}$ = 3.043. Refer to t_{14} . Single-tailed 1% point is 2.624. Significant. Seems mean concentration of hormone has fallen. CI is 1.65 ± $k \times \frac{2.100}{\sqrt{15}}$	A1 M1 A1 A1 A1 M1 M1	4.1171) Allow c's \bar{x} and/or s_{n-1} . Allow alternative: $0 + (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 1.423) for subsequent comparison with \bar{x} . (Or $\bar{x} - (c's 2.624) \times \frac{2.100}{\sqrt{15}}$ (= 0.227) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \bar{x}$ scores M1A0, but ft. No ft from here if wrong. P($t > 3.043$) = 0.00438. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. ft c's $\bar{x} \pm$. ft c's $\bar{x} \pm$. ft c's \bar{s}_{n1} . A correct equation in k using either end of the interval or the width of the	7

(iii) $p + p$ = p = 1 - p (iii) With Prc Ex fr X^2 (If e. X^2 Refe Upposign Sugg (iv) Now	ily) availa cumstance nomically ely to be n	ble. s may mea viable me either rand $pq^3 + pq^3$ $q^6 = \frac{p(1-q)}{p}$ 1	from those f an that it is the thod available dom nor repute $q^{4} + pq^{5} + q^{6}$ $q^{6} + q^{6}$ 0.1875	he only ble.	E1 E1 E1 M1 A1	pi oi oi A	Use of GP for robabilities, r expand in t f q .			3
(ii) $p + 1$ $= \frac{p(1)}{p}$ = 1 - 1 (iii) With $\frac{Prc}{Ex}$ fr X^2 (If e. X^2 Refe Upper Sign Sugg (iv) Now	nomically ely to be n $pq + pq^{2} + q^{2} + $	viable me either rand $pq^3 + pq^3 + pq^3$ $q^6 = \frac{p(1-q)}{p}$ 1	thod availab dom nor repr $q^{4} + pq^{5} + q^{6}$ $q^{6} + q^{6}$	ole.	E1 M1	pi oi oi A	robabilities, or expand in t			
(ii) $p + 1$ $= \frac{p(1)}{p}$ $= 1 - \frac{p(2)}{p}$ (iii) With $\frac{Pro}{Ex}$ fr X^2 (If e. X^2 Refe Upposign Sugg (iv) Now	$pq + pq^{2} + q^{2} $	$pq^{3} + pq^{3} + pq^{2}$ $q^{6} = \frac{p(1-q)}{p}$ 1 0.25	$q^{4} + pq^{5} + q^{6}$ $q^{6} + q^{6}$	resentative.	M1	pi oi oi A	robabilities, or expand in t			
(iii) With $ \frac{p(i)}{i} = 1 - \frac{p(i)}{i} = 1 - \frac{p(i)}{i} = 1 - \frac{p(i)}{i} = 1 - \frac{p(i)}{i} = $	$\frac{p(1-q^6)}{1-q} + q^6 =$ $h p = 0.25$ obability	$q^{6} = \frac{p(1-q)}{p}$	$\frac{q^6}{q^6} + q^6$			pi oi oi A	robabilities, or expand in t			
(iii) With $Protect Experimental Protect Experimen$	h $p = 0.25$	0.25	0.1875		AI	А	or <i>q</i> .			10
$ \begin{array}{c c} \hline Prc \\ \hline Ex \\ fr \\ \end{array} $ $ \begin{array}{c} X^2 \\ (If e. X^2) \\ Refe \\ Upp \\ Sign \\ Sugg \\ (iv) Now \\ Now \\ Xow \\ Yow \\ Yow \\ Yow \\$	obability	0.25	0.1875							2
ProExfr X^2 (If e. X^2 RefeUpper Sign Sugg(iv)Now	obability	0.25	0.1875				Algebra show Beware answe		ngly.	
Ex fr X^2 (If e. X^2 RefeUpper Sign Sugg(iv)Now			0.1875							
Ex fr X^2 (If e. X^2 RefeUpper Sign Sugg(iv)Now				0.140625	0.10546	i9	0.079102	0.059326	0.177979	
X ² (If e. X ² Refe Upp Sign Sugg (iv) Now			18.75		10.5469		7.9102	5.9326	17.7979	
(If e. X ² Refe Upp Sign Sugg (iv) Now			I	M1	D	Probabilities of	correct to 3	dn or		
(If e. X ² Refe Upp Sign Sugg					M1		etter.		up or	
(If e. X ² Refe Upp Sign Sugg (iv) Now							100 for exp			
(If e. X ² Refe Upp Sign Sugg (iv) Now	-0.04 ± 0	0.0033 ± 0	(6136 ± 0.5)	706 + 1.2069	M1	A	All correct an	d sum to 10	00.	
X ² Refe Upp Sign Sugg (iv) Now	= 0.04 + 0.7204 = 10.97(5	+ 7.8206	.0130 + 0.3	700 + 1.2009	A1	c.	.a.o.			
Refe Uppo Sign Sugg (iv) Now		0.0033 + 0 + 7.8225	r expected f).6148 + 0.5	"s then 690 + 1.2071						
Sign Sugg (iv) Now	er to χ_6^2 .				M1	w O	Allow correct wrongly group Otherwise, no $P(X^2 > 10.975)$	ped table an ft if wrong	nd ft.	
(iv) Now	per 10% po	oint is 10.6	54.		A1		lo ft from he	•		
< ,	nificant. gests mod	el with <i>p</i> =	= 0.25 does 1	not fit.	A1 A1		t only c's test t only c's test			9
Refe	w with X^2 =	= 9.124								
	er to χ_5^2 .				M1	w O	Allow correct wrongly group Otherwise, no $P(X^2 > 9.124)$	ped table an ft if wrong	nd ft.	
	100	oint is 9.23			A1	N	No ft from he	re if wrong.		
Impi		to the mod	sts new mod del is due to		A1 E1	C es	Correct concle Comment abord Stimated <i>p</i> , conclusion in	out the effec onsistent w		4
	significan							• ` '		18

4768 Statistics 3

Q1	W ~ N(14, 0.552) G ~ N(144, 0.9 ²)		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	$P(G < 145) = P\left(Z < \frac{145 - 144}{0.9} = 1.1111\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 0.8667	A1	c.a.o.	3
(ii)	$W + G \sim N(14 + 144 = 158,$	B1	Mean.	
	$\sigma^2 = 0.55^2 + 0.9^2 = 1.1125$)	B1	Variance. Accept sd (= 1.0547).	
	P(this > 160) =			
	$P\left(Z > \frac{160 - 158}{1.0547} = 1.896\right) = 1 - 0.9710 = 0.0290$	A1	c.a.o.	3
(iii)	$H = W_1 + + W_7 + G_1 + + G_6 \sim N(962,$	B1	Mean.	
	$\sigma^2 = 0.55^2 + \dots + 0.55^2 + 0.9^2 + \dots + 0.9^2 = 6.9775)$	B1	Variance. Accept sd (= 2.6415).	
	$P(960 < \text{this} < 965) =$ $P\left(\frac{960 - 962}{2 \cdot 6415} = -0.7571 < Z < \frac{965 - 962}{2 \cdot 6415} = 1.1357\right)$	M1	Two-sided requirement.	
	= 0.8720 - (1 - 0.7755) = 0.6475	A1	c.a.o.	
	Now want P(B(4, 0.6475) ≥ 3)	M1	Evidence of attempt to use binomial.	
	$= 4 \times 0.6475^3 \times 0.3525 + 0.6475^4$	M1	ft c's p value. Correct terms attempted. ft c's p value. Accept $1 - P(\le 2)$	
	= 0.38277 + 0.17577 = 0.5585	A1	C.a.o.	7
(iv)	$D = H_1 - H_2 \sim \mathcal{N}(0,$	B1	Mean. (May be implied.)	
	6.9775 + 6.9775 = 13.955)	B1	Variance. Accept sd (= 3.7356).	
	Want <i>h</i> s.t. $P(-h < D < h) = 0.95$	M1	Ft 2 x c's 6.9775 from (iii). Formulation of requirement as 2-sided.	
	i.e. $P(D < h) = 0.975$			
	$\therefore h = \sqrt{13.955} \times 1.96 = 7.32$	B1 A1	For 1.96. c.a.o.	5
				18
·				. •

Q2				
(i)	$H_0: \mu = 1$ $H_1: \mu < 1$	B1	Both hypotheses. Hypotheses in words only must include	
	where μ is the mean weight of the cakes.	B1	"population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{x} =$ " or similar unless \overline{x} is clearly and explicitly stated to be a <u>population</u> mean.	
	$\overline{x} = 0.957375$ $s_{n-1} = 0.07314(55)$	B1	$s_n = 0.06842$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{0.957375 - 1}{\frac{0.07314}{\sqrt{8}}}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 1 + (c's – 1.895) $\times \frac{0.07314}{\sqrt{8}}$ (= 0.950997)	
			for subsequent comparison with \overline{x} . (Or $\overline{x} - (c's - 1.895) \times \frac{0.07314}{\sqrt{8}}$	
	= -1.648(24).	A1	(= 1.006377) for comparison with 1.) c.a.o. but ft from here in any case if wrong. Use of $1 - \overline{x}$ scores M1A0, but ft.	
	Refer to t ₇ .	M1	No ft from here if wrong. P(<i>t</i> < –1.648(24)) = 0.0716.	
	Single-tailed 5% point is –1.895.	A1	Must be minus 1.895 unless absolute values are being compared. No ft from here if wrong.	
	Not significant. Insufficient evidence to suggest that the cakes are underweight on average.	A1 A1	ft only c's test statistic. ft only c's test statistic.	9
(ii)	CI is given by $0.957375 \pm 2.365 \times \frac{0.07314}{\sqrt{8}}$	M1 B1 M1		
	= 0.957375 ± 0.061156= (0.896(2), 1.018(5))	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_7 is OK.	4
(iii)	$\overline{x} \pm 1.96 \times \sqrt{\frac{0.006}{n}}$	M1 B1 A1	Structure correct, incl. use of Normal. 1.96.	3

			All correct.	
(iv)	$2 \times 1.96 \times \sqrt{\frac{0.006}{n}} < 0.025$	M1	Set up appropriate inequation. Condone an equation.	
	$n > \left(\frac{2 \times 1.96}{0.025}\right)^2 \times 0.006 = 147.517$	M1	Attempt to rearrange and solve.	
	So take <i>n</i> = 148	A1	c.a.o. (expressed as an integer). S.C. Allow max M1A1(c.a.o.) when the factor "2" is missing. $(n > 36.879)$	3
				19

Q3									
(i)	 For a systema she needs with no cystema 	a list c	of all st				E1 E1		
	All staff equal • chooses a	y likely	to be	chose			E1		
	• then chooses every 10 th .						E1		
							E1		5
(ii)	Nothing is kno population		out the	e backę	ground		E1	Any reference to unknown distribution or "non-parametric"	
	of difference	es betv	veen tl	he sco	res.		E1	situation. Any reference to	
	H ₀ : <i>m</i> = 0						B1	pairing/differences. Both hypotheses. Hypotheses in	
	H ₁ : <i>m</i> ≠ 0			P	_			words only must include	
	where <i>m</i> is th difference				า		B1	"population". For adequate verbal definition.	4
(iii)			-	-		-			
	Diff -0.8 Rank 2	-2.6 5	8.6 12	6.2 10	6.0 9	-3.6 6	-2.4	4 -0.4 -4.0 5.6 6.6 2.2 1 7 8 11 3	
		5	12	10	3	0	4		
							M1	For differences. ZERO in this section if differences not used.	
							M1	For ranks.	
							A1	ft from here if ranks wrong.	
	<i>W</i> _− = 1 + 2 + 4	+ 5 +	6 + 7 :	= 25			B1	(or $W_+ = 3 + 8 + 9 + 10 + 11 + 12$ = 53)	
	Refer to tables sample) statis				d (/sing	gle	M1	No ft from here if wrong.	
	Lower (or upp (or 65 if 53 us		used)	21⁄2%	tail is	13	A1	i.e. a 2-tail test. No ft from here if wrong.	
	Result is not s	ignifica					A1	ft only c's test statistic.	
	Result is not significant.					A1	ft only c's test statistic.	8	
	No evidence to one of the								

PMT

04	2			-		1
Q4	$f(x) = \frac{2x}{\lambda^2}$ for $0 < x$	$\alpha < \lambda$, $\lambda > 0$				
	λ^{-}					
(i)	f(x) > 0 for all x in	the domain		E1		
0				M1	Correct integral with limits	
	$\int_{0}^{\lambda} \frac{2x}{\lambda^{2}} dx = \left[\frac{x^{2}}{\lambda^{2}}\right]^{\lambda} = -$	$\frac{\lambda^2}{-1}$		IVII	Correct integral with limits.	
	$\int_{0} \frac{1}{\lambda^{2}} dx = \left \frac{1}{\lambda^{2}} \right _{0}$	$\lambda^2 = 1$		A1	Shown equal to 1.	3
	0				Shown equal to 1.	5
(ii)		<i>ب</i> ح		M1	Correct integral with limits.	
(")	$\mu = \int_{0}^{\lambda} \frac{2x^{2}}{\lambda^{2}} dx = \left[\frac{2x^{2}}{\lambda^{2}}\right]$	$\frac{3}{3}$ $\frac{3}{3}$ $=$ $\frac{2\lambda}{3}$			Correct integral with limits.	
	$\int_{0}^{\mu} \lambda^{2} = \lambda$	$\lfloor^2 \rfloor_0 3$		A1	c.a.o.	
					0.0.0.	
	$P(X < \mu) = \int_0^\mu \frac{2x}{\lambda^2} dx$	$=\left \frac{x^2}{x^2}\right $		M1	Correct integral with limits.	
	$J_0 \lambda^2$	$\lfloor \lambda^2 \rfloor_0$				
	$\mu^2 = 4\lambda^2/9$	4				
	$=\frac{\mu^2}{\lambda^2}=\frac{4\lambda^2/9}{\lambda^2}=$	$=\frac{1}{9}$				
	which is independe	ent of λ		A1	Answer plus comment. ft c's μ	4
					provided the answer does not	
					involve λ .	
(iii)	Given $E(X^2) = \frac{\lambda^2}{2}$					
	Given $E(X^{-}) = \frac{1}{2}$					
	$\lambda^2 + \lambda^2 + \lambda^2 + \lambda^2$			M1	Use of Var(X) = $E(X^{2}) - E(X)^{2}$.	
	$\sigma^2 = \frac{\lambda^2}{2} - \frac{4\lambda^2}{9} = \frac{\lambda^2}{18}$					
	2 9 10			A1	c.a.o.	2
(iv)						
	Probability	0.18573	0.25871	0.36983	3 0.18573	
	Expected f	9.2865	12.9355	18.4915	9.2865	
				M1	Probs \times 50 for expected	
				A1	frequencies.	
	2				All correct.	
	$X^2 = 3.0094 + 0.2$	2896 + 0.12	31 + 3.5152	M1	Calculation of X^2 .	
	= 6.937(3)			A1	c.a.o.	
	_					
	Refer to χ_3^2 .			M1	Allow correct df (= cells $- 1$) from	
					wrongly grouped table and ft.	
					Otherwise, no ft if wrong.	
	Lippor EQ(point in	7 015		A 4	$P(X^2 > 6.937) = 0.0739.$	
	Upper 5% point is	1.013.		A1 A1	No ft from here if wrong.	
	Not significant. Suggests model fit	te the data f	for these jors		ft only c's test statistic. ft only c's test statistic.	
	But with a 10% sig			E1	Any valid comment which	9
	6.251) a differe				recognises that the test statistic	3
1						1
	,				is close to the critical values	
	reached.				is close to the critical values.	
	,				is close to the critical values.	18

4768 Statistics 3

1 (i)	H ₀ : The number of eg	ggs hatched c	an be modelled	B1		
Ň	by B(3, 1/2)					
	H ₁ : The number of eg modelled by B(3,		annot be	B1		
	With $p = \frac{1}{2}$					
	Probability	0.125	0.375	0.375	0.125	
	Exp'd frequency	10	30	30	10	
	Obs'd frequency	7	23	29	21	
	$X^2 = 0.9 + 1.6333 + = 14.666(7)$	0.0333 + 12	.1	M1 A1 M1 A1	Probs × 80 for expected frequencies. All correct. Calculation of X^2 . c.a.o.	
	Refer to χ_3^2 .			M1	Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 14.667) = 0.00212.$	
	Upper 5% point is 7.8	R15		A1	No ft from here if wrong.	
	Significant.			Al	ft only c's test statistic.	
	Suggests it is reasona = $\frac{1}{2}$ does not appl	· ·	se model with p	• A1	ft only c's test statistic.	[10]
(ii)	$\bar{x} = \frac{144}{80} = 1.8$ $\therefore \hat{p} = \frac{1.8}{3} = 0.6$			B1	C.a.o.	
	$p = \frac{1}{3} = 0.0$			B1	Use of $E(X) = np$. ft c's mean, provided $0 < \hat{p} < 1$.	[2]
(iii)	Refer to χ^2_2 .			M1	Allow df 1 less than in part (i). No ft if wrong.	
	Upper 5% point is 5.9	991.		A1	No ft if wrong.	
	Suggests it is reasona estimated <i>p</i> does appl		se model with	A1	ft provided previous A mark awarded.	[3]
(iv)	For example: Estimating <i>p</i> leads to at the expense of t freedom. The model in (i) fails	he loss of 1 d	legree of	E2	Reward any two sensible points for E1 each.	[2]
	underestimate for <i>X</i> =	= 3.			Total	[17]

2 (a)	$f(x) = \frac{1}{72} (8x - x^2), \ 2 \le x \le 8$			
(i)	$F(x) = \int_{2}^{x} \frac{1}{72} (8t - t^{2}) dt$	M1	Correct integral with limits (which may be implied subsequently).	
	$=\frac{1}{72}\left[4t^{2}-\frac{t^{3}}{3}\right]_{2}^{x}$	A1	Correctly integrated	
	$=\frac{1}{72}\left(4x^2 - \frac{x^3}{3} - 16 + \frac{8}{3}\right) = \frac{12x^2 - x^3 - 40}{216}$	A1	Limits used. Accept unsimplified form.	[3]
(ii)	1 + ^{F(x)}	G1	Correct shape; nothing below $y = 0$; non-negative gradient.	
	0.5	G1	Labels at (2, 0) and (8, 1).	
	2 4 6 8 10	G1	Curve (horizontal lines) shown for $x < 2$ and $x > 8$.	[3]
(iii)	$F(m) = \frac{1}{2} \qquad \therefore \frac{12m^2 - m^3 - 40}{216} = \frac{1}{2}$	M1	Use of definition of median. Allow use of c's $F(x)$.	
	$\therefore 12m^2 - m^3 - 40 = 108$ $\therefore m^3 - 12m^2 + 148 = 0$	A1	Convincingly rearranged. Beware: answer given.	
	Either $F(4.42) = 0.5003(977) \approx 0.5$			
	Or $4.42^3 - 12 \times 4.42^2 + 148 = -0.0859(12) \approx 0$ $\therefore m \approx 4.42$	E1	Convincingly shown, e.g. 4.418 or better seen.	[3]

PMT

$H_0: m = 4.42$ where <i>m</i> is the			B1 B1	Both. Accept hypotheses in words. Adequate definition of <i>m</i> to include "population".	
Weights	-4.42	Rank of diff			
3.16	-1.26	7			
3.62	-0.80	6			
3.80	-0.62	4			
3.90	-0.52	3			
4.02	-0.40	2			
4.72	0.30	1	M1	for subtracting 4.42.	
5.14	0.72	5		6 1	
6.36	1.94	8	M1	for ranks.	
6.50	2.08	9	A1	ft if ranks wrong.	
6.58	2.16	10			
6.68	2.26	11			
6.78	2.36	12			
$W_{-} = 2 + 3 + 3$	4 + 6 + 7 =	22	B1	$(W_+ = 1 + 5 + 8 + 9 + 10 + 11 + 12)$ = 56)	
Refer to Wil	coxon single	sample tables for	M1	No ft from here if wrong.	
<i>n</i> = 12.	-	_			
Lower 21/2%	point is 13 (or upper is 65 if 56	A1	i.e. a 2-tail test. No ft from here if	
used).				wrong.	
Result is not			A1	ft only c's test statistic.	
		median of 4.42 is	A1	ft only c's test statistic.	[1
consistent w	ith these data	l.			
				Total	[1

PMT

3 (i)	Must assume			
5 (1)	Normality of population	B1		
	• of <u>differences</u> .	B1		
	$H_0: \mu_D = 0$	B1	Both. Accept alternatives e.g. $\mu_D <$	
	$H_{1}: \mu_{D} > 0$		0 for H ₁ , or $\mu_B - \mu_A$ etc provided	
	$11, \mu p > 0$		adequately defined. Hypotheses in	
			words only must include	
			"population". Do NOT allow	
			" \overline{X} =" or similar unless \overline{X} is	
			clearly and explicitly stated to be a	
			population mean.	
	Where μ_D is the (population) mean	B 1	For adequate verbal definition.	
	reduction/difference in cholesterol level.		Allow absence of "population" if	
			correct notation μ is used.	
	MUST be PAIRED COMPARISON t test.			
	Differences (reductions) (before – after) are:		Allow "after – before" if consistent	
			with alternatives above.	
	-0.1 1.7 -1.2 1.1 1.4 0.5 0.9 2.2			
	-0.1 2.0 0.7 0.3			
	$\overline{x} = 0.7833$ $s_{n-1} = 0.9833(46)$ $(s_{n-1}^2 = 0.966969)$	B1	Do not allow $s_n = 0.9415 (s_n^2 = 0.9264)$	
	0.7022 0		0.8864)	
	Test statistic is $\frac{0.7833 - 0}{0.9833}$	M1	Allow c's \overline{x} and/or s_{n-1} .	
	$\frac{0.9835}{\sqrt{12}}$		Allow alternative: $0 + (c's 2.718) \times$	
	V 12		$\frac{0.9833}{\sqrt{12}}$ (= 0.7715) for subsequent	
			$\sqrt{12}$	
			comparison with \overline{x} .	
			(Or \overline{x} – (c's 2.718) × $\frac{0.9833}{\sqrt{12}}$	
			112	
			(= 0.0118) for comparison with 0.)	
	= 2.7595.	A1	c.a.o. but ft from here in any case if	
			wrong.	
			Use of $0 - \overline{x}$ scores M1A0, but	
	Defer to t	M1	ft. No ft from here if wrong.	
	Refer to t_{11} .	IVII	P(t > 2.7595) = 0.009286.	
	Single-tailed 1% point is 2.718.	A1	No ft from here if wrong.	
	Significant.	A1	ft only c's test statistic.	
	Seems mean cholesterol level has fallen.	A1	ft only c's test statistic.	[11]
				[]
		1		
(ii)	CI is $\overline{x} \pm$	M1	Overall structure, seen or implied.	
	2.201	B1	From t_{11} , seen or implied.	
			-	
	$\times \frac{s}{\sqrt{12}} = (-0.5380, 1.4046)$	A1	Fully correct pair of equations	
			using the given interval, seen or	
	$\overline{x} = \frac{1}{2}(1.4046 - 0.5380) = 0.4333$	B1	implied.	
		M1	Substitute \overline{x} and rearrange to find s.	I
	$s = (1.4046 - 0.4333) \times \frac{\sqrt{12}}{2.201} = 1.5287$	A1	c.a.o.	
	2.201	E1		ı
	Using this interval the doctor might conclude that the mean cholesterol level did not seem to		Accept any sensible comment or interpretation of <u>this</u> interval.	[7]
	have been reduced.		interpretation of <u>uns</u> interval.	[7]
			Total	[18]
			Totar	[10]

			Total	[18]
			interval.	
	$\widehat{\sqrt{60}} = 52.1 \pm 1.2146 = (50.885(4), 53.314(6))$	M1 A1	c.a.o. Must be expressed as an	[5]
	$1.96 \\ \times \frac{4.8}{\sqrt{60}}$	B1		
	52.1 ±	M1		
	$s = \sqrt{\frac{104225.90}{59}} = 4.8$ CI is given by	B1	Both correct.	
(1V)	$\overline{x} = \frac{3126.0}{60} = 52.1,$ $s = \sqrt{\frac{164223.96 - 60 \times 52.1^2}{59}} = 4.8$			
(iv)	3126.0			
	$= P\left(Z > \frac{0 - (-10)}{\sqrt{821}} = 0.3490\right) = 1 - 0.6365 = 0.3635$	A1	c.a.o.	[5]
	Want $P(W_A > W_B) = P(W_A - W_B > 0)$	A1 M1	Accept sd (= 28.65).	
	605 + 216 = 821)	M1	Variance.	
	$\sigma^2 = 11^2 + 11^2 + + 11^2 = 605)$ $D = W_A - W_B \sim N(-10,$	B 1	Mean. Accept " $B - A$ ".	
(iii)	$W_A = A_1 + A_2 + \dots + A_5 + 25 \sim N(425,$			
	$1.021 \times \sqrt{6}$		Convincingly shown, bewale A.O.	
	∴ $v = \frac{15}{1.021 \times \sqrt{6}} = 5.9977 = 6$ grams (nearest gram)		Convincingly shown, beware A.G.	[5]
	$\therefore \frac{450 - 435}{\nu\sqrt{6}} = \Phi^{-1}(0.8463) = 1.021$	B1	Inverse Normal.	
	P(this < 450) = P $\left(Z < \frac{450 - 435}{v\sqrt{6}}\right) = 0.8463$	M1	Formulation of the problem.	
(ii)	$W_{B} = B_{1} + B_{2} + \dots + B_{6} + 15 \sim N(435, \sigma^{2} = v^{2} + v^{2} + \dots + v^{2} = 6v^{2})$	B1 B1	Mean. Expression for variance.	
	= 0.8182	A1	c.a.o.	[3]
(i)	$P(A < 90) = P\left(Z < \frac{90 - 80}{11} = 0.9091\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
			Normal distribution tables penalise the first occurrence only.	
4	$A \sim N(80, \sigma = 11)$ $B \sim N(70, \sigma = v)$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the	

Q1	D ~ N(2018, σ = 96)		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables penalise the first occurrence only.	
(i)	Systematic Sampling. It lacks any element of randomness. Choose a random starting point in the range 1 – 10.	B1 E1 E1	May be implied by the next mark. Allow reasonable alternatives e.g. "the list may contain cycles." Beware proposals for a different sampling method.	[3]
(ii)	$P(D > 2100) = P\left(Z > \frac{2100 - 2018}{96} = 0.8542\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 1 - 0.8034 = 0.1966	A1	с.а.о.	[3]
(iii)	$D_1 + D_2 + D_3 \sim N(6054,$	B1	Mean.	
	$\sigma^2 = 96^2 + 96^2 + 96^2 = 27648 $	B1	Variance. Accept sd (= 166.277).	
	P(this < 6000) = P $\left(Z < \frac{6000 - 6054}{166.277} = -0.3248\right)$ = 1 - 0.6273 = 0.3727	A1	c.a.o.	
	Must assume that the months are independent. This is unlikely to be realistic since e.g. consecutive months may not be independent.	E1 E1	Reference to independence of months. Any sensible comment.	[5]
(iv)	Claim ~ N(2018 × 0.45 + 21200 × 0.10 = 3028.10,	M1	Mean.	
	$96^2 \times 0.45^2 + 1100^2 \times 0.10^2 = 13966.24$	A1 M1	C.a.o.	
	90 × 0.43 + 1100 × 0.10 = 13900.24	A1	Variance. Accept sd (= 118.18). c.a.o.	
	$P(3000 < \text{this} < 3300) = P\left(\frac{3000 - 3028.1}{118.18} < Z < \frac{3300 - 3028.1}{118.18}\right)$	M1	Formulation of requirement: a two-sided inequality.	
	= P(-0.2378 < Z < 2.3008) = 0.9893 - (1 - 0.5940) = 0.5833	A1 A1	Ft c's parameters. c.a.o.	[7]
			Total	[18]
		ļ	Total	[10]

02				
Q2				
(i)	 A <i>t</i> test might be used because sample is small population variance is unknown Must assume background population is Normal. 	B1 B1 B1		[3]
(ii)	H ₀ : $\mu = 1.040$ H ₁ : $\mu \neq 1.040$	B1	Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a population mean.	
	where μ is the mean specific gravity of the mixture.	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used.	
	$\overline{x} = 1.0452$ $s_{n-1} = 0.007155$	B1	$s_n = 0.006746$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{1.0452 - 1.040}{\underbrace{0.007155}_{\sqrt{9}}}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 1.040 + (c's 1.860) × $\frac{0.007155}{\sqrt{9}}$ (= 1.0444) for subsequent	
			comparison with \overline{x} . (Or $\overline{x} - (c's 860) \times \frac{0.007155}{\sqrt{9}}$	
	= 2.189(60).	A1	(= 1.0407) for comparison with 1.040.) c.a.o. but ft from here in any case if wrong. Use of $1.040 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_8 .	M1	No ft from here if wrong. P(t > 2.1896) = 0.05996.	
	Double-tailed 10% point is 1.860.	A1	No ft from here if wrong.	
	Significant. Seems mean specific gravity in the mixture does not meet the requirement.	A1 A1	ft only c's test statistic. ft only c's test statistic.	[9]
(iii)	CI is given by			
	1.0452 ± 2.306	M1 B1		
	$\times \frac{0.007155}{\sqrt{2}}$			
	$\overline{\sqrt{9}}$	M1		
	$= 1.0452 \pm 0.0055 = (1.039(7), 1.050(7))$	A1	c.a.o. Must be expressed as an interval. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0.	
	In repeated sampling, 95% of confidence intervals constructed in this way will contain the true population mean.	E2	Recovery to t_8 is OK. E2, 1, 0.	[6]
			Total	[18]

(a) (i)	Use paired between au	l data in ord uthorities.	er to elimi	nate differ	rences		B1					[1]
(ii)	$H_0: m = 0$ where <i>m</i> is	$H_1: m >$ s the populat		n differen	ice.		B1 B1		definition	leses in wor of <i>m</i> to incl		
		fter – Before k of diff	e) 6 6	-1 1	5 5	-4 4	-3	9	8 7	2 9 2 8		
	Refer to ta statistic fo Lower 5% Result is si	point is 8 (ignificant. suggests the	coxon pair or upper is	ed (/single 37 if W_+	e sample used).		M1 A1 B1 M1 A1 A1 A1 A1	differences For ranks. FT from h	s not used. ere if rank here if wi l test. No f test statist	s wrong rong. t from here ic.		[10]
(b)	 H₀: Stock market prices can be modelled by Benford's H₁: Stock market prices can not be modelled by Benford 				ord's	Law.						
<u>\</u> -/	H_1 : Stock	market price	es can not	be modell	ed by Be	enfor						
<u>\</u> -/	Prob	0.301	0.176	0.125	0.097		d's Law 0.079	0.067	0.058	0.051	0.046	
<-/	Prob Exp f	0.301 60.2	0.176 35.2	0.125 25.0	0.097		d's Law 0.079 15.8	0.067	11.6	10.2	9.2	
	Prob Exp f Obs f $X^2 = 0.449$ + 0.90 = 4.530 Refer to χ Upper 5% Not signific Suggests E	$\begin{array}{c c} 0.301 \\ \hline 60.2 \\ 55 \\ \hline 17 + 0.0409 \\ 6716 + 0.01 \\ \hline 5(9) \\ \chi_8^2 \\ \hline point is 13. \\ \hline \end{array}$	$ \begin{array}{c c} 0.176 \\ 35.2 \\ 34 \\ \hline 31 + 0.16 + \\ 379 + 2.25 \\ 36. \\ aw provide $	0.125 25.0 27 - 0.59588 5882 + 0.0	0.097 19.4 16 + 0.040: 00435	7	d's Law 0.079	0.067 13.4 17 Probs × 20 All correct Calculatio c.a.o. Allow corr	11.6 12 00 for expected for expected of X^2 . The form of X^2 . The form of X^2 is the form of X^2 is the form of X^2 is the form of X^2 . The form of X^2 is the	10.2 15 ected freque cells – 1) fr de and ft. C 80636. rong. ic.	9.2 9 encies.	[7]

4700			• • • • •	
Q4	$f(x) = \lambda e^{-\lambda x}$ for $x \ge 0$, where $\lambda > 0$.		Given $\int_0^\infty x^r e^{-\lambda x} dx = \frac{r!}{\lambda^{r+1}}$	
(i)	$\int_{0}^{\infty} f(x) dx = \int_{0}^{\infty} \lambda e^{-\lambda x} dx$ $= \left[-e^{-\lambda x} \right]_{0}^{\infty}$	M1 M1	Integration of $f(x)$. Use of limits or the given result.	
	$= \left(0 - (-e^0)\right) = 1$	A1	Convincingly obtained (Answer given.)	
		G1	Curve, with negative gradient, in the first quadrant only. Must intersect the <i>y</i> -axis.	
		G1	$(0, \lambda)$ labelled; asymptotic to x-axis.	[5]
(ii)	$\mathrm{E}(X) = \int_0^\infty \lambda x \mathrm{e}^{-\lambda x} \mathrm{d}x$	M1	Correct integral.	
	$=\lambdarac{1}{\lambda^2}=rac{1}{\lambda}$	A1	c.a.o. (using given result)	
	$E(X^{2}) = \int_{0}^{\infty} \lambda x^{2} e^{-\lambda x} dx$	M1	Correct integral.	
	$=\lambda \frac{2}{\lambda^3} = \frac{2}{\lambda^2}$	A1	c.a.o. (using given result)	
	$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \operatorname{E}(X)^{2} = \frac{2}{\lambda^{2}} - \left(\frac{1}{\lambda}\right)^{2} = \frac{1}{\lambda^{2}}$	M1	Use of $E(X^2) - E(X)^2$	
		A1		[6]
(iii)	$\mu = 6 \qquad \therefore \lambda = \frac{1}{6}$ $\overline{X} \sim (\text{approx}) \operatorname{N}\left(6, \frac{6^2}{50}\right)$	B1	Obtained λ from the mean.	
	$\overline{X} \approx (\text{approx}) N \left(6 \frac{6^2}{2} \right)$	B1	Normal. Mean. ft c's λ.	
	$(a, \frac{1}{50})$	B1 B1	Variance. ft c's λ .	[4]
(iv)	<u>EITHER</u> can argue that 7.8 is more than 2 SDs from μ .	M1		
	$(6+2\sqrt{0.72}) = 7.697;$		A 95% C.I would be (6.1369, 9.4631).	
	<u>must</u> refer to SD (\overline{X}) , not SD(X)) i.e. outlier.	N /1		
	\Rightarrow doubt.	M1 A1		[3]
	<u>OR</u> formal significance test:	M1		
	$\frac{7.8-6}{\sqrt{0.72}}$ = 2.121, refer to N(0,1), sig at (eg) 5%	M1	Depends on first M, but could imply it.	
	\Rightarrow doubt.	A1	P(Z > 2.121) = 0.0339	
			Total	[18]

Q1	$E \sim N(406, 12^2)$ When a candidate's answers suggest that (s)he appears of the Normal distribution tables penalise the first occu			
(i)	$P(E < 420) = P\left(Z < \frac{420 - 406}{12} = 1.1666\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 0.8783/4	A1	c.a.o.	3
(ii)	$C \sim N(406 \times 14.6 = 5927.6,$ $\sigma^2 = 12^2 \times 14.6^2 = 30695.04)$ P(this > 6000) =	B1 B1	Accept equivalent in £. Mean. Variance. Accept sd (= 175.2).	
	$P\left(Z > \frac{6000 - 5927.6}{175.2} = 0.4132\right) = 1 - 0.6602 = 0.3398$	A1	Accept P(<i>E</i> > 6000/14.6) o.e. c.a.o.	3
(iii)	$B = C_1 + C_2 + C_3 \sim N(17782.8,$ $\sigma^2 = 175.2^2 + 175.2^2 + 175.2^2 = 92085.12)$	B1 B1	Accept equivalent in £, or $E_1 + E_2 + E_3$. Mean. ft from (ii). Variance. Accept sd (= 303.455). ft from (ii).	
	Require b s.t. $P(B < 100b) = 0.99$ $\therefore \frac{100b - 17782.8}{303.455} = 2.326$	B1	Accept $P(E_1 + E_2 + E_3 < 100b/14.6)$ o.e. 2.326 seen.	
	$\therefore 100b = 17782.8 + 2.326 \times 303.455 = 18488.6 (p)$ $b = \pounds 184.89$	A1	c.a.o. (Minimum 4 s.f. required in final answer.)	4
(iv)	H ₀ : $\mu = 432$ H ₁ : $\mu < 432$ where μ is the mean amount of electricity used.	B1 B1	Both hypotheses. Hypotheses in words only must include "population". For adequate verbal definition. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	
	$\overline{x} = 422.16$ $s_{n-1} = 13.075(4)$	B1	$s_n = 11.936$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{422.16 - 432}{\frac{13.075}{\sqrt{6}}}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 432 + (c's -2.015) × 13.075/ $\sqrt{6}$ (= 421.24) for subsequent comparison with \overline{x} . (Or \overline{x} - (c's -2.015) × 13.075/ $\sqrt{6}$	
	= -1.842(13).	A1	(of $x = (c \ s = 2.013) \times 13.013/\sqrt{0}$ (= 432.92) for comparison with 432.) c.a.o. but ft from here in any case if wrong. Use of $\mu - \overline{x}$ scores M1A0.	
	Refer to t_5 .	M1	No ft from here if wrong. P($t < -1.842(13)$) = 0.0624.	
	Single-tailed 5% point is –2.015.	A1	P(t < -1.842(15)) = 0.0024. Must be minus 2.015 unless absolute values are being compared. No ft from here if wrong.	
	Not significant. Insufficient evidence to suggest that the amount of electricity used has decreased on average.	A1 A1	ft only c's test statistic. ft only c's test statistic. Conclusion in context to include "on average" o.e.	9

													1
Q2													
(a) (i)	There are id exhibit diff Each stratu Use it to ob Can get info	erent cl m is ra tain a 1	harac indom repres	teristics ly samp sentative	oled. e sample		ight	E1 E1 E1 E1					4
(ii)	813.9,	For each stratum $\dots \times \frac{2000}{79368}$ giving 813.9, 836.9, 245.4, 103.8 so 814, 837, 245, 104					M1	A 11					
	so 814,	837,	24	5, 1	04			A1	All correc	ct.			2
(b) (i)	The <u>population</u> (or underlying distribution) is assumed to be <u>symmetrical</u> about its <u>median</u> .					E2	E2, 1, 0. 4 key featur		21 for 2 o	ut of 3 of the	2		
(ii)						r the	B1 B1	Both hype only must For adequ	t include	"popula			
	Dif	f –0).66	0.02	-0.80	-0.91	0.28	0.76	6 0.40	1.68	-0.07	1.12	
	Ran		5	1	7	8	3	6	4	10	2	9	
	$W_{-} = 2 + 5$		-					M1 M1 A1 B1	section if For ranks ft from he (or $W_+ =$	paired d ere if ran 1 + 3 + 4	lifference ks wrong 4 + 6 + 9	at of 8) in this es not used. g. +10 = 33)	
	Refer to tab statistic for	n = 10).	-				M1	No ft from		•	h	
	Lower (or u used). Result is no	••			o taii is 1	0 (or 45	11 33	A1 A1	i.e. a 2-ta wrong. ft only c's			nere if	
	No evidenc average	e to su			ge in spei	nding on		AI A1		s test sta	tistic. Co	onclusion in rage" o.e.	10
													18

1				
Q3				
(i)	Using mid- intervals 1.5, 1.7, etc	M1		-
	$\overline{x} = \frac{205}{100} = 2.05$	A1	Mean.	
	$x = \frac{100}{100} = 2.05$ $s = \sqrt{\frac{425.16 - 100 \times 2.05^2}{99}} = 0.2227(01)$	E1	s.d. Answer given; must show convincingly.	3
(ii)	$f = 100 \times P(1.8 \le M < 2.0)$	M1	Probability \times 100.	
	$= 100 \times P(-1.1226 \le z < -0.2245)$ $= 100 \times ((1 - 0.5888) - (1 - 0.8691))$	A1	Correct Normal probabilities. ft c's mean.	
	$=100 \times (0.4112 - 0.1309) = 28.03$	A1	Must show convincingly using Normal distribution. ft c's mean.	3
(iii)	H_0 : The Normal model fits the data. H_1 : The Normal model does not fit the data.	B1 B1	Ignore any reference to parameters.	
	$X^{2} = 0.7294 + 0.1384 + 1.9623 + 3.5155 + 0.2437$ = 6.589(3)	M1 M1 A1	Merge first 2 and last 2 cells. Calculation of X^2 . c.a.o.	
	Refer to χ_2^2 .	M1	Allow correct df (= cells – 3) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 6.589) = 0.0371.$	
	Upper 5% point is 5.991.	A1	No ft from here if wrong.	
	Significant.	A1	ft only c's test statistic.	
	Evidence suggests that the model does not fit the data.	A1	ft only c's test statistic. Conclusion in context.	9
(iv)	 The model overestimates in the 2.2 – 2.4 class, underestimates in the 2 – 2.2 class. At lower significance levels the test would not have been significant. 	E1 E1 E1		3
				18

0.1				
Q4				
(i)		G1 G1 G1	One (straight) line segment correct. Second (straight) line segment correct. Fully labelled intercepts + no spurious other lines.	3
(ii)	E(X) = 0 (By symmetry.)	B1		
	$E(X^{2}) = \int_{-1}^{0} x^{2} (1+x) dx + \int_{0}^{1} x^{2} (1-x) dx$ $= \left[\frac{x^{3}}{3} + \frac{x^{4}}{4}\right]_{-1}^{0} + \left[\frac{x^{3}}{3} - \frac{x^{4}}{4}\right]_{0}^{1}$	M1 M1	One correct integral with limits (which may be implied subsequently). Second integral correct (with limits) or allow use of symmetry.	
	$= 0 - \left(\frac{-1}{3} + \frac{1}{4}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) - 0$ $= \frac{1}{6}$	M1	Correctly integrated and attempt to use limits.	
	:. $\operatorname{Var}(X) = \frac{1}{6} \left(-0^2 \right) = \frac{1}{6}$	A1	c.a.o. Condone absence of explicit evidence of use of $Var(X) = E(X^2) - E(X)^2$.	5
(iii)	$\overline{L} \sim N\!\left(k, \frac{1}{300}\right)$	B1 B1 B1	Normal. Mean. Variance. ft c's variance in (ii) (> 0) / 50.	
	Normal distribution because of the Central Limit Theorem.	E1	Any reference to the CLT.	4
(iv)	CI is given by 90.06 ± 1.96 $\times \frac{1}{\sqrt{300}}$	M1 B1 M1		
	= 90.06 ± 0.11316= (89.947, 90.173)	A1	ft c's variance in (ii) (> 0) / 50. Must be expressed as an interval.	4
(v)	It is reasonable, because 90 lies within the interval found in (iv).	E1	Or equivalent.	1
				17

GCE

Mathematics (MEI)

Advanced GCE

Unit 4768: Statistics 3

Mark Scheme for June 2011

PMT

Q1				
(i)	 <i>t</i> test might be used because population variance is unknown background population is Normal 	E1 E1	Allow "sample is small" as an alternative.	2
(ii)	H ₀ : $\mu = 15.3$ H ₁ : $\mu < 15.3$	B1	Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean.	
	where μ is the mean of Gerry's times.	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used.	
	$\overline{x} = 14.987$ $s_{n-1} = 0.4567(5)$	B1	$s_n = 0.4333$ but do <u>NOT</u> allow this here or in construction of test statistic, but FT from there.	
	Test statistic is $\frac{14.987 - 15.3}{0.45675}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 15.3 + (c's -1.833) $\times \frac{0.45675}{\sqrt{10}}$ (= 15.035) for subsequent comparison with \overline{x} . (Or \overline{x} - (c's -1.833) $\times \frac{0.45675}{\sqrt{10}}$	
	= -2.167(0).	A1	(= 15.252) for comparison with 15.3.) c.a.o. but ft from here in any case if wrong. Use of $\mu - \overline{x}$ scores M1A0, but ft.	
	Refer to t_9 . Single-tailed 5% point is -1.833 .	M1 A1	No ft from here if wrong. Must be minus 1.833 unless absolute values are being compared. No ft from here if wrong. P(t < -2.167(0)) = 0.0292.	
	Significant. Seems that Gerry's times have been reduced on average.	A1 A1	ft only c's test statistic. ft only c's test statistic. Conclusion in context to include "average" o.e.	9
(iii)	A 5% significance level means that the probability of rejecting H_0 given that it is true is 0.05. Decreasing the significance level would make it less	E1		
	likely that a true H_0 would be rejected. Evidence for rejecting H_0 would need to be stronger.	E1 E1	Or equivalent. Allow answers that relate to the context of the question.	3
(iv)	CI is given by $14.987 \pm$	M1	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to <i>t</i> ₉ is OK.	
	$2.262 \times \frac{0.45675}{\sqrt{10}}$	B1 M1		
	$= 14.987 \pm 0.3267 = (14.66(0), 15.31(3))$	A1	c.a.o. Must be expressed as an interval.	4
				18

Q2											
(i)											
~ /		No. particles	0	1	2		3	4	5		
		Obs fr	4	7	10)	20	17			
		Prob'y	0.0150	0.0630	0.13		0.1852	0.1944	3		
		Expfr	1.50	6.30	13.		18.52	19.44			
		Contrib to X^2	(4.1667)	(0.0778)	0.78	343	0.1183	0.3063	2		
		Combined		1 80 128							
					-	M1		correct to 3	-		
						M1		for expecte	ed freque	ncies.	
	v ² 1 21	29 . 0 7942 . 0	1102 . 0.20	$x_{2} = 0.100^{2}$.	A1			L.		
		28 + 0.7843 + 0. 313 + 0.6676 + 0.		063 ± 0.108 .	3 +	M1 M1		tirst 2 cell tion of X^2			
		813 + 0.0070 + 0. 884(5)	4030			A1				s $X^2 = 6.816.$)	
	- 3.	004(J)				AI	C.a.0.	(1º01 uligito	upeu cen	SA = 0.810.)	
	H ₀ : The l	Poisson model fit	s the data.			B1	Ignore	any refere	ence to th	e parameter.	
	H ₁ : The l	Poisson model do	es not fit th	e data.		B1		t accept "d			
	Refer to	χ_6^2 .				M1	wrong	correct df ly grouped wise, no ft	table and	d ft.	
	Upper 10	0% point is 10.64				A1			-	$(\chi_7^2 = 12.02)$	
	Not signi Evidence	ificant. e suggests that the	e model fits	the data.		A1 A1	ft only ft only	3.884) = 0 c's test state c's test state fit model" of	atistic. atistic. De	o not accept	12
(ii)	$H_0: m = 1$ where m	15 $H_1: m > 15$ is the population		meter(in µr	n).	B1 B1	Adequ	Accept hyp ate definiti lation".			
	Given W	$M_{-} = 53 (: W_{+} = 1)$	57)								
		tables of Wilcoxe for $n = 20$.	on paired (/s	ingle sampl	e)	M1	No ft	from here i	f wrong.		
		% point is 60 (or	upper is 150) if W_+ used).	A1	i.e. a 1 wrong	-tail test. N	No ft fron	n here if	
		significant.				A1	ft only	v c's test sta			
		e suggests that the re than 15 μm.	e median dia	ameter appe	ars	A1	-	c's test sta t to include		onclusion in ge" o.e.	6
											18

Q3				
(i) (A)	G(X) 1 X	M1 A1 A1	Increasing curve, through (0, 0), in first quadrant only. Asymptotic behaviour. Asymptote labelled; condone absence of axis labels.	3
(B)	For the UQ G(u) = 0.75 $\therefore \left(1 + \frac{u}{200}\right)^{-2} = \frac{1}{4} \therefore u = 200$ For the LQ G(l) = 0.25 $\left(1 - \frac{l}{200}\right)^{-2} = \frac{3}{4} d = 200 \left(2 - \frac{1}{4}\right) = 20.04$	M1 A1	Use of G(<i>x</i>) for either quartile. c.a.o.	
	$\therefore \left(1 + \frac{l}{200}\right)^{-2} = \frac{3}{4} \therefore l = 200 \left(\frac{2}{\sqrt{3}} - 1\right) = 30.94$ $\therefore IQR = 200 - 30.94 = 169(.06)$ For an outlier $x > UQ + 1.5 \times IQR = 200 + 1.5 \times 169$ =453(.58) \approx 454 (nearest hour)	A1 M1 M1 E1	c.a.o. UQ – LQ UQ +1.5 × IQR. Answer given; must be obtained genuinely.	6
(ii) (A)	$F(x) = \int_0^x \frac{1}{200} e^{\frac{-t}{200}} dt$	M1	Correct integral, including limits (which may be implied subsequently).	
	$= \left[-e^{\frac{-t}{200}} \right]_{0}^{x} = \left(-e^{\frac{-x}{200}} \right) - \left(-e^{\frac{-0}{200}} \right) = 1 - e^{\frac{-x}{200}}$	A1 E1	Correctly integrated. Limits used. Answer given; must be shown convincingly. Condone the omission of $x < 0$ part. Allow use of "+ c" with $F(0) = 0$.	3
(B)	P(X > 50) = 1 - F(50)	M1	Use of $1 - F(x)$	
	$= e^{\frac{-50}{200}} = e^{-0.25}$	E1	Answer given: must be convincing. (= 0.7788(0))	2
(C)	$P(X > 400) = e^{\frac{-400}{200}} = 0.1353(35)$ $P(X > 450) = e^{\frac{-450}{200}} = 0.1053(99)$ $P(X > 450 \mid X > 400) = \frac{P(X > 450)}{P(X > 400)}$	B1 B1 M1	Accept any form. Accept any form. Conditional probability. Not $P(X > 50) \times P(X > 400)$ unless <u>clearly</u> justified.	
	$=\frac{e^{\frac{-450}{200}}}{e^{\frac{-400}{200}}}=e^{\frac{-50}{200}}=e^{-0.25} (=0.7788)$	A1	Accept division of decimals, 3dp or better. Accept a.w.r.t. 0.778 or 0.779.	4
				18

Q4	$C \sim N(10, 0.4^2), D \sim N(35, 3.5^2)$			
	When a candidate's answers suggest that (s)he appears of the Normal distribution tables penalise the first occu			
(i)	$P(C < 9.5) = P\left(Z < \frac{9.5 - 10}{0.4} = -1.25\right)$	M1 A1	For standardising. Award once, here or elsewhere.	
	= 1 - 0.8944 = 0.1056	A1	c.a.o.	3
(ii)	$D-S = D - (C_1 + C_2 + C_3 + C_4) \sim N(-5,$	B1	Mean. Accept $+5$ for $S - D$.	
	$\sigma^2 = 3.5^2 + (0.4^2 + 0.4^2 + 0.4^2 + 0.4^2) = 12.89)$	B1	Variance. Accept sd (= 3.590).	
	Want $P(D > S) = P(D - S > 0)$	M1	Formulation of requirement. Accept $S - D < 0$. This mark could be awarded in (iii) if not earned here.	
	$= 1 - \Phi\left(\frac{0 - (-5)}{3.59} = 1.39(27)\right)$			
	= 1 - 0.9182 = 0.0818	A1	c.a.o.	4
(iii)	New $(D-S) = (D \times 1.3) - (C_1 + + C_5) \sim N(-4.5,$	B1	Mean. Accept +4.5 for $S - D$.	
	$\sigma^2 = (3.5^2 \times 1.3^2) + (0.4^2 + + 0.4^2) = 21.5025)$	M1 A1	Correct use of $\times 1.3^2$ for variance. c.a.o. Accept sd (= 4.637)	
	Again want $P(D > S) = P(D - S > 0)$		Or S – D < 0. M1 for formulation in (ii) available here.	
	$= 1 - \Phi\left(\frac{0 - (-4.5)}{4.637} = 0.9704\right)$			
	= 1 - 0.8341 = 0.1659	A1	c.a.o.	4
(iv)	CI is given by $9.73 \pm 1.96 \times \frac{0.4}{\sqrt{12}}$	M1 B1 M1	1.96 seen.	
	$= 9.73 \pm 0.2263 = (9.50(37), 9.95(63))$	A1	c.a.o. Must be expressed as an interval.	
	Since 10 lies above this interval, it seems that the cheeses are underweight.	E1	Ft c's interval.	
	In repeated sampling, 95% of all confidence intervals constructed in this way will contain the true mean.	E1 E1		7
				10
				18

June	2012	
------	------	--

(Question	Answer	Marks	Guidance
1	(i)	A paired sample is used in this context in order to eliminate any effects due to the surfaces used.	E1 [1]	Must refer to (differences between) surfaces.
1	(ii)	A <i>t</i> test might be used since the sample is small and the population variance is not known (it must be estimated from the data). Must assume: Normality of population of <u>differences</u> .	E1 E1 B1 B1 [4]	Allow use of " σ ", otherwise insist on "population". Allow "underlying" or "distribution" to imply "population".
1	(iii)	$ \begin{array}{l} {\rm H}_{0}{\rm :} \ \mu_{D} = 0 \\ {\rm H}_{1}{\rm :} \ \mu_{D} > 0 \end{array} $	B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H ₁ , or $\mu_B - \mu_A$ etc provided adequately defined. Hypotheses in words only must
		Where μ_D is the (population) mean reduction/difference in drying time. <u>MUST</u> be PAIRED COMPARISON <i>t</i> test. Differences (reductions) (before – after) are: 0.7 0.7 0.2 –0.3 0.8 –0.1 0.3 –0.1 0.1 0.5 $\bar{x} = 0.28 s_{n-1} = 0.3852(84) (s_{n-1}^2 = 0.1484(44))$ Test statistic is $\frac{0.28 - 0}{\frac{0.3853}{\sqrt{10}}}$	B1 B1 M1	include "population". Do NOT allow " $\overline{X} =$ " or similar. unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used. Allow "after – before" if consistent with alternatives above. Do not allow $s_n = 0.3655$ ($s_n^2 = 0.1336$) Allow c's \overline{x} and/or s_{n-1} . Allow alternative: 0 + (c's 1.833) × $\frac{0.3853}{\sqrt{10}}$ (= 0.2233) for subsequent comparison with \overline{x} .
		= 2.298. Refer to <i>t</i> ₉ . Single-tailed 5% point is 1.833. Significant. Seems mean drying time has fallen.	A1 M1 A1 A1 A1 [9]	(Or $\overline{x} - (c's \ 1.833) \times \frac{0.3853}{\sqrt{10}}$ (= 0.0566) for comparison with 0.) c.a.o. but ft from here in any case if wrong. Require 3/4 sf; condone up to 6. Use of $0 - \overline{x}$ scores M1A0, but ft. No ft from here if wrong. $P(t > 2.298) = 0.02357$. No ft from here if wrong. ft only c's test statistic. ft only c's test statistic. "Non-assertive" conclusion in context to include "on average" oe.

C	Questi	on	Answer	Marks	Guidance
1	(iv)	CI is given by $0.28 \pm 2.262 \times \frac{0.3853}{\sqrt{10}}$		M1 B1 M1	Allow c's \overline{x} . Allow c's s_{n-1} .
			$= 0.28 \pm 0.2756 = (0.0044, 0.5556)$	[A1	c.a.o. Must be expressed as an interval. Require $3/4$ dp; condone 5. If the final answer is centred on a negative sample mean then do not award the final A mark. ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1 B0 M1 A0. Recovery to t_9 is OK.
2	(a)	(i)	For example, need to take a sample because the population might be too large for it to be sensible to take a complete census. Because the sampling process might be destructive.	E1 E1 [2]	Reward 1 mark each for any two distinct, sensible points.
2	(a)	(ii)	For example Sample should be unbiased. Sample should be representative (of the population).	E1 E1 [2]	Reward 1 mark each for any two distinct, sensible points that the sample/data should be fit for purpose. Further examples include: data should not be distorted by the act of sampling; data should be relevant.
2	(a)	(iii)	A random sample enables proper statistical inference to be undertaken because we know the probability basis on which it has been selected	E2	Award E2, 1, 0 depending on the quality of response.
2	(b)	(i)	A Wilcoxon signed rank test might be used when nothing is known about the distribution of the background population. Must assume symmetry (about the median).	E1 E1 [2]	Do not allow "sample", or "data" unless it clearly refers to the population. Do not allow if "Normality" forms part of the assumption.

⁴⁷⁶⁸

PMT

Mark Scheme

4768

2

3

Q	Question		Answer		Guidance
2	(b)	(ii)	$H_0: m = 28.7$ $H_1: m > 28.7$	B1	Both. Accept hypotheses in words.
			where m is the population median	B1	Adequate definition of <i>m</i> to include "population".
			Speeds -28.7 Rank of diff		
			32.0 3.3 8 29.1 0.4 3		
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
			35.2 6.5 12		
			34.4 5.7 11	M1	for subtracting 28.7.
			28.6 -0.1 1		
			32.3 3.6 9	M1 A1	for ranks.
			28.5 -0.2 2	AI	ft if ranks wrong. If candidate has tied ranks then penalise A0 here but ft from here.
			27.0 -1.7 5		in candidate has their runks their penanse rio here but it from here.
			33.3 4.6 10		
			$\begin{array}{ c c c c c c c } \hline 28.2 & -0.5 & 4 \\ \hline 31.9 & 3.2 & 7 \\ \hline \end{array}$		
			31.9 3.2 7		
			$W_{-} = 1 + 2 + 4 + 5 + 6 = 18$	B1	$(W_+ = 3 + 7 + 8 + 9 + 10 + 11 + 12 = 60)$
			Refer to Wilcoxon single sample tables for $n = 12$.	M1	No ft from here if wrong.
			Lower 5% point is 17 (or upper is 61 if 60 used).	A1	ie a 1-tail test. No ft from here if wrong.
			Result is not significant.	A1	ft only c's test statistic.
			No evidence to suggest that the median speed has	A1	ft only c's test statistic. "Non-assertive" conclusion in context to include
			increased.	[10]	"on average" oe.
3			$S \sim N(11.07, 2.36^2)$ $C \sim N(57.33, 8.76^2)$	[10]	When a candidate's answers suggest that (s)he appears to have
5			$R \sim N(24.23, 3.75^2)$		neglected to use the difference columns of the Normal
					distribution tables, penalise the first occurrence only.
	(i)		P(10 < <i>S</i> < 13)		
			-p(10-11.07 < 7 < 13-11.07)		
			$= P\left(\frac{10 - 11.07}{2.36} < Z < \frac{13 - 11.07}{2.36}\right)$	M1	For standardising. Award once, here or elsewhere.
			= P(-0.4534 < Z < 0.8178)	A1	
			= 0.7931 - (1 - 0.6748)		
			= 0.4679	A1	Cao Accept 0.468(0), 0.4681, 0.4682, but not 0.4683.
			- 0.4079	[3]	Cuo necept 0.+00(0), 0.+001, 0.+002, 0ut not 0.+005.

June 2012

June	2012	
------	------	--

Q	uestio	on	Answer	Marks	Guidance
3	(ii)		Want $P(R > S + 10)$ i.e. $P(R - S > 10)$	M1	Allow $S - R$ provided subsequent work is consistent.
			$R - S \sim N(24.23 - 11.07 = 13.16)$	B1	Mean.
			$3.75^2 + 2.36^2 = 19.6321)$	B1	Variance. Accept sd = $\sqrt{19.6321} = 4.4308$
			$P(\text{this} > 10) = P(Z > \frac{10 - 13.16}{\sqrt{19.6321}} = -0.7132)$		
			= 0.7621	A1	cao
				[4]	
3	(iii)		Want $P(S + R > \frac{2}{3}C)$ i.e. $P(S + R - \frac{2}{3}C > 0)$	M1	Allow $\frac{2}{3}L - (S + R)$ provided subsequent work is consistent.
			$S + R - \frac{2}{3}C \sim N(11.07 + 24.23 - \frac{2}{3} \times 57.33 = -2.92,$	B1	Mean
			$2.36^2 + 3.75^2 + (\frac{2}{3} \times 8.76)^2 = 53.7377)$	B1	Variance. Accept sd = $\sqrt{53.7377} = 7.3306$
			$P(\text{this} > 0) = P(Z > \frac{0 - (-2.92)}{\sqrt{53.7377}} = 0.3983)$		
			= 1 - 0.6548 = 0.3452	A1	cao
				[4]	
3	(iv)		$\overline{x} = 98.484$, $s_{n-1} = 10.1594$	B1	Do not allow $s_n = 9.7269$.
			CI is given by $98.484 \pm$	M1	ft c's $\overline{x} \pm$.
			2.201	B1	From t_{11} .
			$\times \frac{10.1594}{\sqrt{12}}$	M1	ft c's s_{n-1} .
			$\overline{\sqrt{12}}$		
			$= 98.484 \pm 6.455 = (92.03, 104.94)$	A1	cao Must be expressed as an interval.
					Require 1 or 2 dp; condone 3dp.
				[5]	
3	(v)		Normality is unlikely to be reasonable – times could	E1	Discussion required. Accept any reasonable point.
			well be (positively) skewed.		Accept "reasonable" provided an adequate explanation is given.
			Independence is unlikely to be reasonable – e.g. a	E1	Discussion required. Accept any reasonable point.
			competitor who is fast in one stage may well be fast		This is independence between stages for a particular competitor,
			in all three.	[0]	not between competitors.
				[2]	

C	Question	Answer				Marks		Guidance		
4	(i)	H_0 : The model for the number of callouts fits the data H_1 : The model for the number of callouts does not fit the data.					Do	Do not allow "Data fit the model" o.e for either hypothesis.		
		Obs'd frequency	145	79	22		6	3	0	
		Exp'd frequency	139.947	83.968	25.19		038	0.756	0.101	
		Merge last 3 cells. $X^2 = 0.1824 + 0.29$		Exp 5.895 0 + 1.6355)	M1 M1	Cal	lculation o	of X^2 .	
		= 2.515(8)				A1			3/4 sf; condone up to 6.	
		Refer to χ^2_2 .				M1			et df (= cells – 2) from wrongly grouped table and ft. o ft if wrong. $P(X^2 > 2.5158) = 0.2842$.	
		Upper 5% point is 5.991.							ere if wrong.	
		Not significant.				A1		only c's tes		
		Suggests it is reasonal fits the data.	ble to suppo	se that the mo	odel	A1			st statistic. "Non-assertive" conclusion in words (+context). "Data fit model" o.e.	
		fits the data.				[9]		not allow	Data III model o.e.	
4	(ii)	Mean = $5/3$ \therefore $\lambda = 0$).6			B1				
						[1]				
4	(iii)	$F(t) = \int_0^t 0.6e^{-0.6x} dx$				M1	All	ow use of	ral with limits (which may be implied subsequently). "+ c " accompanied by a valid attempt to evaluate it.	
		$=\left[-e^{-0.6x}\right]_{0}^{t}$				A1	Co	rrectly inte	egrated.	
		$= \left[-e^{-0.6t} - (-e^{0}) \right] = 1 - $	$e^{-0.6t}$			A1			or <i>c</i> evaluated correctly. Accept unsimplified form. er is given in terms of λ then allow max M1A1A0.	
						[3]	11 1	inar answe		
4	(iv)	P(T > 1) = 1 - F(1)				M1	ft c	r's F(t).		
		$=1-(1-e^{-0.6})=0.5$	5488			A1	cac	Allow an	y exact form of the correct answer.	
						[2]				
4	(v)	$F(m) = \frac{1}{2} \qquad \therefore 1 - e^{-1}$	$\frac{1}{2}$			M1	Use	e of definit	tion of median. Allow use of c's $F(t)$.	
		$\therefore e^{-0.6m} = \frac{1}{2} \qquad \therefore -0.6.$	$m = -\ln 2$	$\therefore m = \frac{\ln 2}{0.6}$		M1	Co	nvincing a	attempt to rearrange to " $m = \dots$ ", to include use of logs.	
		m = 1.155 (days)		0.0		A1			l only from the correct $F(t)$. Must be evaluated. 4 sf; condone 5.	
						[3]				

(Question	Answer	Marks	Guidance
1	(i)	A Normal test is not appropriate since the sample is small and the population variance is not known (it	E1	
		must be estimated from the data).	E1	Allow use of " σ ", otherwise insist on "population".
			[2]	The use of o , otherwise moist on population .
1	(ii)	The sample is taken from a Normal population.	B1	
			[1]	
1	(iii)	H ₀ : $\mu = 7.8$ H ₁ : $\mu \neq 7.8$	B1	Both hypotheses. Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a population mean.
		where μ is the mean water pressure.	B1	For adequate verbal definition. Allow absence of "population" if correct notation μ is used.
		$\overline{x} = 7.631$ $s = 0.1547$	B1	$s_n = 0.1459$ but do <u>NOT</u> allow this here or in construction of test statistic, but ft from there.
		Test statistic is 7.631-7.8	M1	Allow c's \overline{x} and/or s_{n-1} .
		Test statistic is $\frac{7.631 - 7.8}{\frac{0.1547}{\sqrt{9}}}$		Allow alternative: 7.8 + (c's –2.896) × 0.1547/ $\sqrt{9}$ (= 7.65) for subsequent comparison with \overline{x} .
				(Or \overline{x} – (c's –2.896) × 0.1547/ $\sqrt{9}$ (= 7.78) for comparison with 7.8.)
		= -3.27(7).	A1	c.a.o. but ft from here in any case if wrong. Use of $\mu - \overline{x}$ scores M1A0.
		Refer to t_8 .	M1	No ft from here if wrong.
		Double-tailed 2% point is ±2.896.	A1	Must compare test statistic with <u>minus</u> 2.896 unless absolute values are being compared. No ft from here if wrong. Allow $P(t < -3.27(7) \text{ or } t > 3.27(7)) = 0.0113$ for M1A1.
		Significant.	A1	ft only c's test statistic if both M's scored.
		Sufficient evidence to suggest that the mean water pressure has changed.	A1	ft only c's test statistic if both M's scored. Conclusion in context to include "average" o.e.
			[9]	

Q	uestio	n	Answer	Marks	Guidance
1	(iv)		In repeated sampling, 95% of all confidence intervals constructed in this way will contain the true mean.	E1 E1 [2]	
1	(v)		CI is given by 7.631 ± 2.306	M1 B1	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_8 is OK. Allow c's \overline{x} . 2.306 seen.
			$\times \frac{0.1547}{\sqrt{9}}$ = 7.631 ± 0.118(9) = (7.512, 7.750)	M1 A1 [4]	Allow c's s_{n-1} . c.a.o. Must be expressed as an interval.
2	(i)			G1 G1 G1	Curve with positive gradient, through the origin and in the first quadrant only. Correct shape for an inverted parabola ending at maximum point. End point (2, 3/4) labelled.
				[3]	

⁴⁷⁶⁸

Q	Juestio	n	Answer	Marks	Guidance
2	(ii)		$E(X) = \frac{3}{16} \int_0^2 (4x^2 - x^3) dx$	M1	Correct integral for $E(X)$ with limits (which may appear later).
			$=\frac{3}{16}\left[\frac{4x^{3}}{3}-\frac{x^{4}}{4}\right]_{0}^{2}$	M1	Correctly integrated. Dep on previous M1.
			$=\frac{3}{16}\left\{\left(\frac{32}{3}-\frac{16}{4}\right)-0\right\}$		
			$=\frac{5}{4}$	A1	Limits used correctly to obtain PRINTED ANSWER (BEWARE) convincingly. Condone absence of "–0".
			$E(X^{2}) = \frac{3}{16} \int_{0}^{2} (4x^{3} - x^{4}) dx$	M1	Correct integral for $E(X)$ with limits (which may appear later).
			$=\frac{3}{16}\left[x^{4}-\frac{x^{5}}{5}\right]_{0}^{2}$	M1	Correctly integrated. Dep on previous M1.
			$=\frac{3}{16}\left\{\left(16-\frac{32}{5}\right)-0\right\}$		
			$=\frac{9}{5}$	A1	Limits used correctly to obtain result. Condone absence of "-0".
			$Var(X) = \frac{9}{5} - \left(\frac{5}{4}\right)^2 = \frac{19}{80}$	M1	Use of $Var(X) = E(X^2) - E(X)^2$.
			$sd = \sqrt{\frac{19}{80}} = 0.487(3)$	A1	сао
				[8]	
2	(iii)		$\operatorname{SE}(\overline{X}) = \frac{0.487}{\sqrt{100}}$	M1	
			= 0.0487	A1	ft c's $\sigma/10$.
				[2]	

Q	Juestio	on	Answer	Marks	Guidance
2	(iv)		$P(X < 1) = \frac{3}{16} \int_0^1 (4x - x^2) dx$	M1	Correct integral for $P(X < 1)$ with limits (which may appear later).
			$=\frac{3}{16}\left[2x^{2}-\frac{x^{3}}{3}\right]_{0}^{1}$		
			$=\frac{3}{16}\left\{ \left(2-\frac{1}{3}\right)-0\right\}$		
			$=\frac{5}{16}$		
			16	A1	cao. Condone absence of "–0" when limits applied.
				[2]	
2	(v)		Regard the reed beds as clusters.	E1	NB "Clusters of <u>reeds</u> " scores 0 unless clearly and correctly explained.
			Select a few clusters (maybe only one) at random.	E1	
			Take a (simple random) sample of reeds (or	E1	
			maybe all of them) from the selected cluster(s).	LI	
				[3]	
3			$P1 \sim N(2025, 44.6^2)$		When a candidate's answers suggest that (s)he appears to have neglected to use
			$P2 \sim N(1565, 21.8^2)$		the difference columns of the Normal distribution tables penalise the first
			$I \sim N(1410, 33.8^2)$		occurrence only.
3	(i)		P(<i>P</i> 1 < 2100) =	M1	For standardising. Award once, here or elsewhere.
			$P\left(Z < \frac{2100 - 2025}{44.6} = 1.681(6)\right)$	A1	
			= 0.9536/7	A1	c.a.o.
				[3]	

Q	uestio	on	Answer	Marks	Guidance
3	(ii)		Require $P(P1 - P2 > 400)$	M1	
			$P1 - P2 \sim (2025 - 1565 = 460,$	B1	Mean.
			$44.6^2 + 21.8^2 = 2464.4)$	B1	Variance. Accept sd (= 49.64).
			P(this > 400) =		
			$P\left(Z > \frac{400 - 460}{\sqrt{2464.4}} = -1.208(6)\right) = 0.8864/5$	A1	cao
				[4]	
3	(iii)		$T = P1 + P2 + I \sim N(5000,$	B1	Mean.
			$\sigma^2 = 44.6^2 + 21.8^2 + 33.8^2 = 3606.84)$	B1	Variance. Accept sd (= 60.056).
			Require <i>b</i> s.t. $P(T > b) = 0.95$		
			b - 5000 1 645	B1	-1.645 seen.
			$\therefore \frac{b - 5000}{\sqrt{3606.84}} = -1.645$		
			$\therefore b = 5000 - 1.645 \times \sqrt{3606.84} = 4901.2$	A1	c.a.o.
				[4]	
3	(iv)		$Mean = (1.2 \times 2025) + (1.3 \times 1565) +$	B1	Condone absence of £.
			$(0.8 \times 1410) = \text{\pounds}5592.50$		
			$Var = (1.2^2 \times 44.6^2) + (1.3^2 \times 21.8^2) +$	M1	Use of at least one of $(1.2^2 \times 44.6^2)$ etc
			$(0.8^2 \times 33.8^2) = 4398.7076 \approx \pounds^2 4399$	A1	Condone absence of \pounds^2 .
				[3]	
3	(v)		Mean = (123.72 + 127.38)/2 = 125.55	B1	Cao
			= 127.38 - 125.55 = 5.02(3)	B1	Sight of 2.576.
			$s = \frac{127.38 - 125.55}{2.576/\sqrt{50}} = 5.02(3)$	M1	Or equivalent.
			,	A1	cao
				[4]	

(Questic	on			A	nswer	•			Mar	·ks				Guidance	
4	(a)	(i)	Number all the projects to be marked. (Sampling frame.) Use a form of random number generator to select the projects in the sample until 12 projects have been selected.				E1 E1			ng (eg	system	atic s	subsequently describes a different method of ampling).			
										[2]					
4	(a)	(ii)	H ₀ : $m = 0$ H ₁ : $m \neq 0$ where <i>m</i> is the population median difference between the examiners' marks.									This is	given	in the	questi	on.
			Diff	15	10	2	_7	11	19	-8	-14	4 17	13	-5	-4	
			Rank	10	6	1	4	7	12	5	9	11	8	3	2	
			$W_{-} = 2 + 3 + 4 + 5 + 9 = 23$					M M A B	1 1	For ran ft from	lks. here i	f ranks	wron	ut of 8) in this section if differences not used. g. 0 + 11 + 12 = 55)		
			Refer to tables of Wilcoxon paired (/single sample) statistic for $n = 12$.							М	1	No ft from here if wrong.				
			Lower (or upper if 55 used) 5% tail is 17 (or 61 if 55 used).				A	1	i.e. a 2-	-tail te	st. No	ft fron	n here if wrong.			
			Result i	s not s	ignific	cant.				Α	1	ft only	c's tes	t statis	tic.	
			Insuffic in the m						ence	A	1	ft only	c's tes	t statis	tic. C	onclusion in context to include "average" o.e.
										[8]]					

Q	Questio	on	Answer	Marks	Guidance
4	(b)		 H₀: The random number function is performing as it should. H₁: The random number function is not performing as it should. 	B1	Both hypotheses. Must be the right way round. Allow use of the uniform distribution/model. Do not accept "data fit model" oe.
			All expected frequencies are 10 $X^2 = 1.6 + 0.4 + 0.1 + 1.6 + 0.4 + 0.1 + 2.5 + 2.5 + 1.6 + 1.6$ = 12.4	B1 M1 A1	Calculation of X^2 . c.a.o.
			Refer to χ_9^2 .	M1	Allow correct df (= cells – 1) from wrongly grouped table and ft. Otherwise, no ft if wrong. $P(X^2 > 12.4) = 0.1916.$
			Upper 10% point is 14.68.	A1	No ft from here if wrong.
			Not significant.	A1	ft only c's test statistic.
			Insufficient evidence to suggest that the random number function is not performing as it should.	A1	ft only c's test statistic. Conclusion in context. Allow in terms of the uniform distribution/model. Do not accept "data fit model" oe.
				[8]	

PMT

June 2013

Mark Scheme

Question		Answ	er	Marks	Guidance	
1 (i)		H ₀ : $m = 7.4$ H ₁ : $m < 7.4$ where <i>m</i> is the population median time.			Both. Accept hypotheses in words, but must include "population". Do NOT allow symbols other than <i>m</i> unless clearly and explicitly stated to be a <u>population median</u> .	
				B1	Adequate definition of <i>m</i> to include "population".	
	Times	-7.4	Rank of diff			
	6.90	-0.50	8			
	7.23	-0.17	3			
	6.54	-0.86	10			
	7.62	0.22	4			
	7.04	-0.36	6	M1	for subtracting 7.4.	
	7.33	-0.07	1			
	6.74	-0.66	9			
	6.45	-0.95	11	M1	for ranking.	
	7.81	0.41	7			
	7.71	0.31	5	A1	All correct. ft if ranks wrong.	
	7.50	0.10	2			
	6.32	-1.08	12			
	$W_{+} = 2 + 4 -$	+5+7=18		B1	$(W_{-} = 1 + 3 + 6 + 8 + 9 + 10 + 11 + 12 = 60)$	
			sample tables for	M1	No ft from here if wrong.	
	Lower 5% p used).	oint is 17 (or	upper is 61 if 60	A1	i.e. a 1-tail test. No ft from here if wrong.	
	Result is not	significant.		A1	ft only c's test statistic.	
		evidence to s has been rec	uggest that the luced.	A1	ft only c's test statistic. Conclusion in context.	
				[10]		

June	2013	
------	------	--

	Questio	n Answer	Marks	Guidance
1	(ii)	$\bar{x} = 6.94$ $s = 0.37$	B1	Accept $s^2 = 0.1369$. Beware use of msd (0.13518875) or rmsd (0.3676(8)). Do not allow here or below.
		CI is given by $6.94 \pm$	M1	ft c's $\overline{x} \pm$.
		1.96	B1	1.96 seen.
		$\times \frac{0.37}{\sqrt{80}}$	M1	ft c's <i>s</i> but not rmsd.
		$= 6.94 \pm 0.0811 = (6.859, 7.021)$	A1	c.a.o. Must be expressed as an interval.
				[rmsd gives $6.94 \pm 0.0805(7) = (6.8594(2), 7.0205(7))$]
		Normal distribution can be used because the sample size is large enough for the Central Limit Theorem to apply.	E1	CLT essential
			[6]	
1	(iii)	Advantage: A 99% confidence interval is more likely to contain the true mean.	E1	O.e.
		Disadvantage: A 99% confidence interval is less precise/wider.	E1	O.e.
			[2]	
2	(i)	A paired test would eliminate any differences between individual cattle.	E1	
			[1]	
2	(ii)	Must assume: Normality of population	B1	
		of <u>differences</u> .	B1	
			[2]	

PMT

Question	Answer	Marks	Guidance	
2 (iii)	$egin{array}{llllllllllllllllllllllllllllllllllll$	B1	Both. Accept alternatives e.g. $\mu_D > -10$ for H ₁ , or $\mu_A - \mu_B$ etc provided adequately defined.	
	Where μ_D is the (population) mean increase/difference in milk yield.	B1	Hypotheses in words only must include "population". Do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. For adequate verbal definition. Allow absence of "population" if correct notation μ is used.	
	MUST be PAIRED COMPARISON <i>t</i> test.			
	Differences (increases) (after – before) are: 4 9 6 13 1 8 6 7 9 12	M1	Allow "before – after" if consistent with alternatives for hypotheses above.	
	$\overline{x} = 7.5 s_{n-1} = 3.566(8) (s_{n-1}^2 = 12.722(2))$	A1	Do not allow $s_n = 3.3837 (s_n^2 = 11.45)$.	
	Test statistic is $\frac{7.5 - 10}{3.5668}$	M1	Allow c's \overline{x} and/or s_{n-1} . Allow reversed numerator compared with 2.2164	
	$\frac{3.3668}{\sqrt{10}}$		Allow alternative: $10 - (c's \ 1.833) \times \frac{3.5668}{\sqrt{10}}$ (= 7.933) for subsequent comparison	
			with \overline{x} .	
			(Or \overline{x} + (c's 1.833) × $\frac{3.5668}{\sqrt{10}}$ (= 9.567) for comparison with 10.)	
	= -2.2164.	A1	c.a.o. but ft from here in any case if wrong. Use of $10 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_9 .	M1	No ft from here if wrong.	
	Single-tailed 5% point is –1.833.	A1	Must be minus 1.833 unless absolute values are being compared. No ft from here if wrong. $P(t < -2.2164) = 0.0269$.	
	Significant.	A1	ft only c's test statistic.	
	Sufficient evidence to suggest that the mean milk yield has not increased by 10 litres (per	A1	ft only c's test statistic. Conclusion in context to include "on average" o.e. Accept "Sufficient evidence to suggest that the company's claim is not justified."	
	cow per week).	[10]	o.e.	

Q	Questior	n Answer	Marks	Guidance		
2	(iv)	CI is given by 7.5 \pm	M1	ZERO/4 if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_9 is OK. Allow c's \overline{x} .		
		2.262	B1	2.262 seen.		
		$\times \frac{3.5668}{\sqrt{10}}$	M1	Allow c's s_{n-1} .		
		$= 7.5 \pm 2.5514 = (4.948, 10.052)$	A1	c.a.o. Must be expressed as an interval.		
			[4]			
3	(i)	I V	G1	Curve, through the origin and in the first quadrant only.		
			G1	A single maximum; curve returns to $y = 0$; nothing to the right of $x = 5$.		
			G1	No t.pt at $x = 0$; t.pt. at $x = 5$; (5, 0) labelled (p.i. by an indicated scale).		
			[3]			
3	(ii)	$\mathbf{F}(x) = k \int_0^x t(t-5)^2 \mathrm{d}t$	M1	Correct integral for $F(x)$ with limits (which may appear later).		
		$F(x) = k \int_{0}^{x} t(t-5)^{2} dt$ $= k \left[\frac{t^{4}}{4} - \frac{10t^{3}}{3} + \frac{25t^{2}}{2} \right]_{0}^{x}$	M1	Correctly integrated.		
		$=k\left(\frac{x^4}{4} - \frac{10x^3}{3} + \frac{25x^2}{2}\right)$	A1	Limits used correctly to obtain expression. Condone absence of " -0 ". Do not require complete definition of F(<i>x</i>). Dependent on both M1's		
			[3]			

June	2013	
------	------	--

Q	uestio	n	Answer	Marks	Guidance
3	(iii)		F(5) = 1		
			$\therefore k \left(\frac{5^4}{4} - \frac{10 \times 5^3}{3} + \frac{25 \times 5^2}{2} \right) = 1$	M1	Substitute $x = 5$ and equate to 1.
			$\therefore k \left(\frac{1875 - 5000 + 3750}{12} \right) = 1$		Expect to see evidence of at least this line of working (oe) for A1.
			$\therefore k \times \frac{625}{12} = 1$	A1	Convincingly shown Powers printed answer
			$\therefore k = \frac{12}{625}$	[2]	Convincingly shown. Beware printed answer.
3	(iv)		For $0 \le x < 1$, Expected $f = 60 \times F(1)$	M1	Use of $60 \times F(x)$ with correct <i>k</i> .
			$= 60 \times \frac{12}{625} \left(\frac{1^4}{4} - \frac{10 \times 1^3}{3} + \frac{25 \times 1^2}{2} \right) = 10.848$	A1	Allow also 31.488 – frequency for $1 \le x < 2$ provided that one found using F(x). Allow either frequency found by integration.
			For $1 \le x < 2$, Expected $f = 60 - \Sigma$ (the rest)	B1	FT 31.488 – previous answer.
			= 20.64		Or allow $60 \times (F(2) - F(1))$
				[3]	

Question		n Answer	Marks	Guidance	
3	(v)	H_0 : The model is suitable / fits the data.	B1	Both hypotheses. Must be the right way round.	
		H_1 : The model is not suitable / does not fit the data.		Do not accept "data fit model" oe.	
		Merge last 2 cells: Obs $f = 17$, Exp $f = 10.752$	M1		
		$X^2 = 3.1525 + 1.5411 + 1.5460 + 3.6307$	M1	Calculation of X^2 .	
		= 9.870	A1	c.a.o.	
		Refer to χ_3^2 .	M1	Allow correct df (= cells $- 1$) from wrongly grouped wrong.	table and ft. Otherwise, no ft if
		Upper 2.5% point is 9.348.	A1	No ft from here if wrong. $P(X^2 > 9.870) = 0.0197$.	
		Significant.	A1	ft only c's test statistic.	
		Sufficient evidence to suggest that the model	A1	ft only c's test statistic. Conclusion in context.	
		is not suitable in this context.		Do not accept "data do not fit model" oe.	
			[8]		
4		$C \sim N(96, 21)$ $M \sim N(57, 14)$		When a candidate's answers suggest that (s)he appeadifference columns of the Normal distribution tables only.	6
4	(i)	P(90 < <i>C</i> < 100)			
		(90-96 - 100-96)	M1	For standardising. Award once, here or elsewhere.	
		$= P \left(\frac{90 - 96}{\sqrt{21}} < Z < \frac{100 - 96}{\sqrt{21}} \right)$		SC – candidates with consistent variances of 21 ² and 14 ² can be awarded all M and marks	
		= P(-1.3093 < Z < 0.8729)	A1	Either side correct.	SC - 0.2857, 0.1905
		= 0.8086 - (1 - 0.9047)	A1	Both table values correct. Or 0.8086 – 0.0953	SC 0.5755 – (1 – 0.6125)
		= 0.7133	A1	c.a.o.	
			[4]		
4	(ii)	Total weight $T \sim N(153, 35)$	B1	Mean.	
			B1	Variance. Accept $sd = 5.916$	SC 637 sd = 25.239
		$P(T < 145) = P\left(Z < \frac{145 - 153}{\sqrt{35}} = -1.3522\right)$			
		= 1 - 0.9118 = 0.0882	A1	c.a.o.	
			[3]		

PMT

Mark Scheme

Q	Juestio	n Answer	Marks	Guidance	
4	(iii)	$T_1 + T_2 + T_3 + T_4 \sim N(612, 140)$	B1	Mean.	
			B1	Variance. Accept $sd = 11.832$ $SC = 2548 \ sd = 50.478$	
		Require <i>w</i> such that $P(\text{this} > w) = 0.95$	M1		
		$\therefore w = 612 - 1.645 \times \sqrt{140}$	B1	1.645 seen.	
		= 592.5(3)	A1	c.a.o.	
			[5]		
4	(iv)	Require $M \ge 0.35(M + C)$	M1	Formulate requirement.	
		$\therefore 0.65M \ge 0.35C$			
		$\therefore 0.65M - 0.35C \ge 0$	A1	Convincingly shown. Beware printed answer.	
		$0.65M - 0.35C \sim$	B1	Mean.	
		$N((0.65 \times 57) - (0.35 \times 96) = 3.45,$	M1	For use of at least one of $0.65^2 \times \dots$ or $0.35^2 \times \dots$	
		$(0.65^2 \times 14) + (0.35^2 \times 21) = 8.4875)$	A1	Variance. Accept sd = 2.913 SC variance = 136.83 sd = 11.70	
		P(This ≥ 0) = P $\left(Z \ge \frac{0 - 3.45}{\sqrt{8.4875}} = -1.1842\right)$			
		= 0.8818	A1	c.a.o.	
			[6]		